分析 設(shè)C(x1,y1),D(x2,y2),把C,D的坐標(biāo)代入函數(shù)解析式,得到x1x2=1,再代入$\frac{m}{n^2}$,利用換元法結(jié)合二次函數(shù)求最值.
解答 解:設(shè)C(x1,y1),D(x2,y2),
∵y1=y2,${x}_{1}+\frac{1}{{x}_{1}}={x}_{2}+\frac{1}{{x}_{2}}$,x1≠x2,
∴x1x2=1.
∴$\frac{m}{n^2}$=$\frac{{x}_{2}-{x}_{1}}{({x}_{2}+\frac{1}{{x}_{2}})^{2}}=\frac{{x}_{2}-\frac{1}{{x}_{2}}}{({x}_{2}+\frac{1}{{x}_{2}})^{2}}=\frac{t}{{t}^{2}+4}$$≤\frac{1}{4}$,$t={x}_{2}-\frac{1}{{x}_{2}}>0$,
當(dāng)且僅當(dāng)t=2時(shí)成立.
故答案為:$\frac{1}{4}$.
點(diǎn)評(píng) 本題考查對(duì)勾函數(shù),考查了函數(shù)值域的求法,考查數(shù)學(xué)轉(zhuǎn)化思想方法,屬中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{\sqrt{17}}{2}$ | B. | $\frac{\sqrt{15}}{3}$ | C. | $\frac{\sqrt{57}}{3}$ | D. | $\frac{8}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{9}{2}$ | B. | 4 | C. | 3 | D. | 0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 5 | B. | 1 | C. | 5$\sqrt{5}$ | D. | $\sqrt{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 0<e≤$\frac{\sqrt{3}}{2}$ | B. | $\frac{1}{2}$≤e<1 | C. | $\frac{\sqrt{3}}{2}$<e<1 | D. | $\frac{\sqrt{3}}{2}$≤e<1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{1}{6}$ | C. | $\frac{1}{24}$ | D. | $\frac{1}{120}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | y=$\frac{2x}{x}$與y=2 | B. | y=$\sqrt{{x}^{2}}$與y=($\sqrt{x}$)2 | C. | y=lgx2與y=2lgx | D. | y=$\frac{{x}^{2}}{x}$與y=x(x≠0) |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com