20.已知圓C:x2+y2+2x-3=0,直線(xiàn)l:x+ay+2-a=0(a∈R),則( 。
A.l與C相離B.l與C相切
C.l與C相交D.以上三個(gè)選項(xiàng)均有可能

分析 直線(xiàn)l:x+ay+2-a=0(a∈R),恒過(guò)定點(diǎn)(-2,1),判斷點(diǎn)在圓內(nèi),即可得出結(jié)論.

解答 解:直線(xiàn)l:x+ay+2-a=0(a∈R),恒過(guò)定點(diǎn)(-2,1)
∵(-2)2+12+2×(-2)-3=-2<0,
∴點(diǎn)在圓內(nèi),
∴l(xiāng)與C相交,
故選C.

點(diǎn)評(píng) 本題圓的方程,直線(xiàn)與圓的位置關(guān)系的判斷,確定直線(xiàn)過(guò)定點(diǎn)是關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.已知R上的可導(dǎo)函數(shù)f(x)的圖象如圖所示,則不等式xf′(x)>0的解集為(-1,0)∪(1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.如圖,在圓C:(x+1)2+y2=16內(nèi)有一點(diǎn)A(1,0),Q為圓C上一點(diǎn),AQ的垂直平分線(xiàn)與C、Q的連線(xiàn)交于點(diǎn)M.
(1)求點(diǎn)M的軌跡方程;
(2)在x軸上是否存在一定點(diǎn)N(t,0),使得點(diǎn)M與點(diǎn)N的距離和它到直線(xiàn)l:x=4的距離的比是常數(shù)λ?若存在,求出點(diǎn)N及λ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.如圖,曲線(xiàn)Γ在頂點(diǎn)為O的角α的內(nèi)部,A、B是曲線(xiàn)Γ上任意相異兩點(diǎn),且α≥∠AOB,我們把滿(mǎn)足條件的最小角叫做曲線(xiàn)Γ相對(duì)于點(diǎn)O的“確界角”.已知O為坐標(biāo)原點(diǎn),曲線(xiàn)C的方程為y=$\left\{\begin{array}{l}{\sqrt{4+\frac{{x}^{2}}{3}}(x≤0)}\\{2{x}^{2}-3x+2(x>0)}\end{array}\right.$,那么它相對(duì)于點(diǎn)O的“確界角”等于(  )
A.$\frac{π}{3}$B.$\frac{2π}{3}$C.$\frac{5π}{12}$D.$\frac{7π}{12}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.如圖①,在直角梯形ABCD中,AD∥BC,∠BAD=$\frac{π}{2}$,AB=BC=$\sqrt{2}$,AD=2$\sqrt{2}$,E是AD的中點(diǎn),O是AC與BE的交點(diǎn).將△ABE沿BE折起到△A1BE的位置,如圖②.
(1)證明:CD⊥平面A1OC;
(2)若平面A1BE⊥平面BCDE,求平面A1BC與平面A1CD夾角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.某大學(xué)為了在2016年全國(guó)大學(xué)生成語(yǔ)聽(tīng)寫(xiě)大賽取得優(yōu)秀成績(jī),抽調(diào)男女各20名學(xué)生組成集訓(xùn)隊(duì)進(jìn)行成語(yǔ)聽(tīng)寫(xiě)集訓(xùn),集訓(xùn)結(jié)束時(shí),為了檢驗(yàn)集訓(xùn)效果,對(duì)所有集訓(xùn)隊(duì)員進(jìn)行成語(yǔ)聽(tīng)寫(xiě)考核,試題為聽(tīng)寫(xiě)100個(gè)常用成語(yǔ)(每個(gè)1分,滿(mǎn)分100分),考核成績(jī)?nèi)鐖D莖葉圖所示:
(I)若大于或等于80分為優(yōu)秀隊(duì)員,80分以下為非優(yōu)秀隊(duì)員,根據(jù)莖葉圖填寫(xiě)下面2×2列聯(lián)表,并判斷能否有95%的把握認(rèn)為隊(duì)員的優(yōu)秀與性別有關(guān)?
非優(yōu)秀優(yōu)秀總數(shù)
20
20
總數(shù)40
(Ⅱ)若從考核成績(jī)95分以上(包括95分)的隊(duì)員中任選兩人代表這所大學(xué)參加全國(guó)大學(xué)生成語(yǔ)聽(tīng)寫(xiě)大賽,求至少有一名男隊(duì)員參加的概率.
下面的臨界值表供參考:
P(K2≥k0) 0.150.100.050.0250.0100.0050.001
 k02.0722.7063.8415.0246.6357.87910.828
(參考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知拋物線(xiàn)y2=4x的準(zhǔn)線(xiàn)與雙曲線(xiàn)4x2-$\frac{{y}^{2}}{^{2}}$=1(b>0)交于A、B兩點(diǎn),點(diǎn)F為拋物線(xiàn)的焦點(diǎn),若△FAB為直角三角形,則雙曲線(xiàn)離心率為( 。
A.$\frac{\sqrt{17}}{2}$B.$\frac{\sqrt{15}}{3}$C.$\frac{\sqrt{57}}{3}$D.$\frac{8}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.圓x2+(y-m)2=5與雙曲線(xiàn)x2-$\frac{{y}^{2}}{4}$=1的漸近線(xiàn)相切,則正實(shí)數(shù)m=( 。
A.5B.1C.5$\sqrt{5}$D.$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.設(shè)f(x)=(x+10)6,求fm(2)、f(6)(2)、及f(20)(2)

查看答案和解析>>

同步練習(xí)冊(cè)答案