在△ABC中,角A,B,C所對的邊分別為a,b,c且b=2
2
,(3a-c)•cosB=b•cosC.
(1)求角cosB的大;
(2)求△ABC面積的最大值.
考點:正弦定理,余弦定理
專題:解三角形
分析:(1)由已知及正弦定理可得
cosC
cosB
=
3sinA-sinC
sinB
,由兩角和的正弦公式化簡可得cosB=
1
3

(2)由已知及(1)可求sinB,由余弦定理可得ac≤6,由三角形面積公式即可求最大值.
解答: 解:(1)由正弦定理可得:
a
sinA
=
b
sinB
=
c
sinC
,
所以由已知可得:(3a-c)•cosB=b•cosC.
cosC
cosB
=
3sinA-sinC
sinB

⇒sinBcosC=3sinAcosB-cosBsinC
⇒sinBcosC+cosBsinC=3sinAcosB
⇒sin(B+C)=3sinAcosB
⇒sinA=3sinAcosB
⇒cosB=
1
3

(2)∵b=2
2
,cosB=
1
3
,sinB=
1-cos2B
=
2
2
3
,
∵由余弦定理:b2=a2+c2-2accosB,
∴可得:8=a2+c2-
2
3
ac≥2ac-
2
3
ac=
4
3
ac,
∴解得:ac≤6,
∴S△ABC=
1
2
acsinB≤
1
2
×6×
2
2
3
=2
2
點評:本題主要考查了正弦定理,余弦定理,三角形面積公式的應用,考查了兩角和的正弦公式的應用,屬于基本知識的考查.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

一商場為了做廣告,在廣場上升起了一廣告氣球,其直徑為4m,當人們仰望氣球中心的仰角為60°時,測得氣球的視角為2°(當a很小時,可取sinα=a,π=3.14),則該氣球的中心到地面的距離約為 ( 。
A、99mB、95m
C、90mD、89m

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在平面直角坐標系中,定義:一條直線經(jīng)過一個點(x,y),若x,y都是整數(shù),就稱該直線為完美直線,這個點叫直線的完美點,若一條直線上沒有完美點,則就稱它為遺憾直線.現(xiàn)有如下幾個命題:
①如果k與b都是無理數(shù),則直線y=kx+b一定是遺憾直線;
②“直線y=kx+b是完美直線”的充要條件是“k與b都是有理數(shù)”;
③存在恰有一個完美點的完美直線;
④完美直線l經(jīng)過無窮多個完美點,當且僅當直線l經(jīng)過兩個不同的完美點.
其中正確的命題是
 
.(寫出所有正確命題的編號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

求函數(shù)f(x)=cos2x-sinx的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知圓C:(x-1)2+(y-2)2=2外有一點P(2,-1),過P作圓C的切線PA,PB,A,B是切點,
(1)求PA,PB所在的直線方程;
(2)求切線長|PA|,|PB|.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知兩個命題p:sinx+cosx>m,q:x2+mx+1>0.如果對?x∈R,p和q中有且僅有一個是真命題.求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
1
3
x3+(1-b)x2-a(b-3)x+b-2的圖象過原點,且在原點處的切線斜率是-3,則不等式組
x-ay≥0
x-by≥0
所確定的平面區(qū)域在x2+y2=4內(nèi)的面積為(  )
A、
π
3
B、
π
2
C、π
D、2π

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若a,b>0,直線l:ax+by+1=0始終平分圓M:x2+y2+4x+2y+1=0的周長,則
2
a
+
1
b
的最小值為( 。
A、
5
B、3
C、5
D、9

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若sinα•sinβ=1,則cos(α-β)的值是
 

查看答案和解析>>

同步練習冊答案