16.已知點(diǎn)A,B為圓C:x2+y2=4上的任意兩點(diǎn),且|AB|>2,若線段AB中點(diǎn)組成的區(qū)域?yàn)镸,在圓C內(nèi)任取一點(diǎn),則該點(diǎn)落在區(qū)域M內(nèi)的概率為$\frac{3}{4}$.

分析 由題意,求出線段AB中點(diǎn)組成的區(qū)域?yàn)镸為半徑為$\sqrt{3}$的同心圓,利用幾何概型的公式得到所求.

解答 解:由題意,線段AB中點(diǎn)組成的區(qū)域M為以原點(diǎn)為圓心,$\sqrt{3}$為半徑的圓,由幾何概型的公式得到$\frac{π(\sqrt{3})^{2}}{π×4}=\frac{3}{4}$;
故答案為:$\frac{3}{4}$.

點(diǎn)評(píng) 本題考查了幾何概型的概率求法;關(guān)鍵是求出區(qū)域M的面積.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.若雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左、右焦點(diǎn)分別為F1、F2,線段F1F2被拋物線y2=2bx的焦點(diǎn)分成5:3兩段,則此雙曲線的離心率為(  )
A.$\sqrt{2}$B.$\frac{2\sqrt{3}}{3}$C.$\frac{3\sqrt{2}}{4}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知復(fù)數(shù)z=x+yi(x,y∈R)滿足z•$\overline{z}$+(1-2i)•z+(1+2i)•$\overline{z}$=3.求復(fù)數(shù)z在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)的軌跡.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.設(shè)函數(shù)f(x)=|x-a|+|2x+2|-5(a∈R).
(Ⅰ)試比較f(-1)與f(a)的大小;
(Ⅱ)當(dāng)a=-5時(shí),求函數(shù)f(x)的圖象與軸圍成的圖形面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.把正整數(shù)排列成如圖甲的三角形數(shù)陣,然后擦去第偶數(shù)行的奇數(shù)和第奇數(shù)行中的偶數(shù),得到如圖乙的三角數(shù)陣,再把圖乙中的數(shù)按從小到大的順序排成一列,得到數(shù)列{an},若an=623,則n的值為324.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.2017年省內(nèi)事業(yè)單位面向社會(huì)公開招聘工作人員,為保證公平競爭,報(bào)名者需要參加筆試和面試兩部分,且要求筆試成績必須大于或等于90分的才有資格參加面試,90分以下(不含90分)則被淘汰.現(xiàn)有2000名競聘者參加筆試,參加筆試的成績按區(qū)間[30,50),[50,70),[70,90),[90,110),[110,130),[130,150]分段,其頻率分布直方圖如下圖所示(頻率分布直方圖有污損),但是知道參加面試的人數(shù)為500,且筆試成績?cè)诘娜藬?shù)為1440.
(1)根據(jù)頻率分布直方圖,估算競聘者參加筆試的平均成績;
(2)若在面試過程中每人最多有5次選題答題的機(jī)會(huì),累計(jì)答題或答錯(cuò)3題即終止答題.答對(duì)3題者方可參加復(fù)賽.已知面試者甲答對(duì)每一個(gè)問題的概率都相同,并且相互之間沒有影響.若他連續(xù)三次答題中答對(duì)一次的概率為$\frac{9}{64}$,求面試者甲答題個(gè)數(shù)X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知函數(shù)$f(x)=\left\{{\begin{array}{l}{\frac{x+1}{x-1}-1,x>1}\\{2-{e^x},x≤1}\end{array}}\right.$,若函數(shù)h(x)=f(x)-mx-2有且僅有一個(gè)零點(diǎn),則實(shí)數(shù)m的取值范圍是(-∞,-e]∪{0}∪{-$\frac{1}{2}$}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.如圖,F(xiàn)為線段BC的中點(diǎn),CE=2EF,$DF=\frac{3}{5}AF$,設(shè)$\overrightarrow{AC}=a$,$\overrightarrow{AB}=b$,試用a,b表示$\overrightarrow{AE}$,$\overrightarrow{AD}$,$\overrightarrow{BD}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.對(duì)于函數(shù)$f(x)=\sqrt{2}(sinx+cosx)$,給出下列四個(gè)命題:
①存在$α∈(-\frac{π}{2},0)$,使$f(α)=\sqrt{2}$;
②函數(shù)f(x)的圖象關(guān)于直線$x=-\frac{3π}{4}$對(duì)稱;
③存在φ∈R,使函數(shù)f(x+ϕ)的圖象關(guān)于坐標(biāo)原點(diǎn)成中心對(duì)稱;
④函數(shù)f(x)的圖象向左平移$\frac{π}{4}$就能得到y(tǒng)=-2cosx的圖象.
其中正確命題的序號(hào)是②③.

查看答案和解析>>

同步練習(xí)冊(cè)答案