計算:
C
2
n
n2+n
=
 
考點:組合及組合數(shù)公式
專題:計算題,排列組合
分析:直接利用組合數(shù)公式,可得結(jié)論.
解答: 解:
C
2
n
n2+n
=
n(n-1)
2
n2+n
=
n-1
2(n+1)

故答案為:
n-1
2(n+1)
點評:本題考查組合及組合數(shù)公式,考查學(xué)生的計算能力,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC的三個內(nèi)角A,B,C的對邊分別為a,b,c,且△ABC的面積為S=
3
2
accosB.
(1)若c=2a,求角A,B,C的大。
(2)若a=2,且
π
4
≤A≤
π
3
,求邊c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若ax2+x+1<0,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若一個直六棱柱的三視圖如圖所示,則這個直六棱柱的體積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

兩千多年前,古希臘畢達(dá)哥拉斯學(xué)派的數(shù)學(xué)家曾經(jīng)在沙灘上研究數(shù)學(xué)問題,他們在沙灘上畫點或用小石子來表示數(shù),按照點或小石子能排列的形狀對數(shù)進(jìn)行分類,如下圖中的實心點個數(shù)1,5,12,22,…,被稱為五角形數(shù),其中第1個五角形數(shù)記作a1=1,第2個五角形數(shù)記作a2=5,第3個五角形數(shù)記作a3=12,第4個五角形數(shù)記作a4=22,…,若按此規(guī)律繼續(xù)下去,

(1)a5=
 

(2)若an=117,則n=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在區(qū)間(0,2)上隨機取兩個數(shù)a和b,則關(guān)于x的方程x2-2ax+b2=0有實根的概率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在數(shù)列{an}中,已知a1=
1
2
,當(dāng)n≥2時,2an=2an-1+n,則數(shù)列{an}通項公式為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將邊長為1m的正三角形薄鐵片,沿一條平行于某邊的直線剪成兩塊,其中一塊是梯形,記s=
(梯形的周長)2
梯形的面積
,則s的最小值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若實數(shù)x,y滿足|xy|=1,則x2+4y2的最小值為
 

查看答案和解析>>

同步練習(xí)冊答案