19.已知奇函數(shù)f(x)、偶函數(shù)g(x)的圖象分別如圖①②所示,若方程f[g(x)]=0,g[f(x)]=0的實根個數(shù)分別為a,b,則a+b等于(  )
A.10B.14C.7D.3

分析 先利用奇函數(shù)和偶函數(shù)的圖象性質(zhì)判斷兩函數(shù)的圖象,再利用圖象由外到內(nèi)分別解方程即可得兩方程解的個數(shù),最后求和即可.

解答 解:由圖可知,圖1為f(x)圖象,圖2為g(x)的圖象,m∈(-2,-1),n∈(1,2)
∴方程f(g(x))=0?g(x)=-1或g(x)=0或g(x)=1?x=-1,x=1,x=m,x=0,x=n,x=-2,x=2,∴方程f(g(x))=0有7個根,即a=7;
而方程g(f(x))=0?f(x)=a或f(x)=0或f(x)=b?f(x)=0?x=-1,x=0,x=1,
∴方程g(f(x))=0 有3個根,即b=3.
∴a+b=10
故選:A.

點評 本題主要考查了函數(shù)奇偶性的圖象性質(zhì),利用函數(shù)圖象解方程的方法,數(shù)形結(jié)合的思想方法,屬中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.如圖,已知正六棱柱的最大對角面的面積為4m2,互相平行的兩個側(cè)面的距離為 2m,則這個六棱柱的體積為( 。
A.3m3B.6m3C.12m3D.15m3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.集合M={x|lg(1-x)<1},N={x|-1≤x≤1},則M∩N=( 。
A.(-9,1)B.(-9,1]C.[-1,1]D.[-1,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.某校高二(1)班的一次數(shù)學(xué)測試成績的莖葉圖和頻率分布直方圖都受到不同程度的破壞,但可見部分如下,且將全班25人的成績記為Ai(i=1,2,..,25),由右邊的程序運行后,輸出n=10.據(jù)此解答如下問題:

(1)求莖葉圖中破損處分數(shù)在[50,60),[70,80),[80,90)各區(qū)間段的頻數(shù);
(2)利用頻率分布直方圖估計該班的數(shù)學(xué)測試成績的眾數(shù),中位數(shù),平均數(shù)分別是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.過點M(-2b,0)做橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的兩條切線,分別與橢圓交于A、B兩點,且MA⊥MB,
(1)求橢圓離心率;
(2)若橢圓的右焦點為F,四邊形MAFB的面積為2+$\sqrt{2}$,求橢圓的標準方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.直線2x-y-3=0的傾斜角為θ,則tanθ=( 。
A.$\frac{1}{2}$B.$-\frac{1}{2}$C.2D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.函數(shù)f(x)=log(2x-1)$\sqrt{3x-2}$的定義域是(  )
A.($\frac{2}{3}$,+∞)B.($\frac{2}{3}$,1)∪(1,+∞)C.($\frac{1}{2}$,+∞)D.($\frac{1}{2}$,1)∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.過點P(-1,2)且垂直于直線2x-3y+9=0的直線方程是(  )
A.3x+2y-1=0B.3x+2y+7=0C.2x-3y+5=0D.2x-3y+8=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.如圖所示的幾何體,則該幾何體的俯視圖是選項圖中的( 。
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案