【題目】已知橢圓的離心率為,點(diǎn)在橢圓上,焦點(diǎn)為,圓O的直徑為.
(1)求橢圓C及圓O的標(biāo)準(zhǔn)方程;
(2)設(shè)直線l與圓O相切于第一象限內(nèi)的點(diǎn)P,且直線l與橢圓C交于兩點(diǎn).記 的面積為,證明:.
【答案】(1),;(2)見解析
【解析】
(1)利用橢圓的性質(zhì)列出方程組,即可得到橢圓C及圓O的標(biāo)準(zhǔn)方程;
(2)利用斜截式設(shè)出直線的方程,根據(jù)點(diǎn)到直線的距離公式得到點(diǎn)到直線的距離,將直線的方程代入橢圓,結(jié)合韋達(dá)定理,得出的長(zhǎng)度,利用三角形面積公式以及二次函數(shù)的性質(zhì)即可證明.
(1)由題意,橢圓C的方程為.
可得,解得
所以橢圓C的方程為.
因?yàn)榻裹c(diǎn)在軸上,
所以橢圓C的焦點(diǎn)為.
所以直徑為的圓O的方程為.
(2)由題意知,直線l與圓O相切于第一象限內(nèi)的點(diǎn)P,
設(shè)直線的斜截式方程為.
因?yàn)橹本與圓相切,
所以點(diǎn)到直線的距離為.
即.
因?yàn)橹本與橢圓C相交于兩點(diǎn),
由,整理得,
設(shè),則
.
因?yàn)?/span>.
又,
所以.
所以.
又因?yàn)?/span>,
所以.
因?yàn)?/span>,
所以
.
設(shè),則,則
.
令.
則.
設(shè)
因?yàn)?/span>在上單調(diào)遞減,
所以.
所以.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】年底,湖北省武漢市等多個(gè)地區(qū)陸續(xù)出現(xiàn)感染新型冠狀病毒肺炎的患者,為及時(shí)有效地對(duì)疫情數(shù)據(jù)進(jìn)行流行病學(xué)統(tǒng)計(jì)分析,某地研究機(jī)構(gòu)針對(duì)該地實(shí)際情況,根據(jù)該地患者是否有武漢旅行史與是否有確診病例接觸史,將新冠肺炎患者分為四類:有武漢旅行史(無接觸史),無武漢旅行史(無接觸史),有武漢旅行史(有接觸史)和無武漢旅行史(有接觸史),統(tǒng)計(jì)得到以下相關(guān)數(shù)據(jù):
有接觸史 | 無接觸史 | 總計(jì) | |
有武漢旅行史 | |||
無武漢旅行史 | |||
總計(jì) |
(1)請(qǐng)將上面列聯(lián)表填寫完整,并判斷能否在犯錯(cuò)誤的概率不超過的前提下,認(rèn)為有武漢旅行史與有確診病例接觸史有關(guān)系?
(2)已知在無武漢旅行史的名患者中,有名無癥狀感染者.現(xiàn)在從無武漢旅行史的名患者中,選出名進(jìn)行病例研究,求人中至少有名是無癥狀感染者的概率.
下面的臨界值表供參考:
參考公式:,其中.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等腰中,斜邊,為直角邊上的一點(diǎn),將沿直線折疊至的位置,使得點(diǎn)在平面外,且點(diǎn)在平面上的射影在線段上設(shè),則的取值范圍是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)討論的單調(diào)性;
(2)當(dāng)時(shí),若函數(shù)在上有且只有一個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)討論的單調(diào)性;
(2)若函數(shù)在上有且只有一個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸,建立極坐標(biāo)系,直線的極坐標(biāo)方程為.
(1)求的普通方程和的直角坐標(biāo)方程;
(2)直線與軸的交點(diǎn)為,經(jīng)過點(diǎn)的直線與曲線交于兩點(diǎn),若,求直線的傾斜角.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了研究家用轎車在高速公路上的車速情況,交通部門對(duì)100名家用轎車駕駛員進(jìn)行調(diào)查,得到其在高速公路上行駛時(shí)的平均車速情況為:在55名男性駕駛員中,平均車速超過100的有40人;在45名女性駕駛員中,平均車速不超過100的有25人.
(1)完成下面的列聯(lián)表,并判斷是否有99.5%的把握認(rèn)為平均車速超過100的人與性別有關(guān).
平均車速超過100人數(shù) | 平均車速不超過100人數(shù) | 合計(jì) | |
男性駕駛員人數(shù) | |||
女性駕駛員人數(shù) | |||
合計(jì) |
(2)以上述數(shù)據(jù)樣本來估計(jì)總體,現(xiàn)從高速公路上行駛的大量家用轎車中隨機(jī)抽取3輛,記這3輛車中駕駛員為男性且車速超過100的車輛數(shù)為,若每次抽取的結(jié)果是相互獨(dú)立的,求的分布列和數(shù)學(xué)期望.
參考公式與數(shù)據(jù):,其中
0.150 | 0.100 | 0.050 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義首項(xiàng)為1且公比為正數(shù)的等比數(shù)列為“M-數(shù)列”.
(1)已知等比數(shù)列{an}滿足:,求證:數(shù)列{an}為“M-數(shù)列”;
(2)已知數(shù)列{bn}滿足:,其中Sn為數(shù)列{bn}的前n項(xiàng)和.
①求數(shù)列{bn}的通項(xiàng)公式;
②設(shè)m為正整數(shù),若存在“M-數(shù)列”{cn},對(duì)任意正整數(shù)k,當(dāng)k≤m時(shí),都有成立,求m的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線:的焦點(diǎn)為,拋物線上的點(diǎn)到準(zhǔn)線的最小距離為2.
(1)求拋物線的方程;
(2)若過點(diǎn)作互相垂直的兩條直線,,與拋物線交于,兩點(diǎn),與拋物線交于,兩點(diǎn),,分別為弦,的中點(diǎn),求的最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com