【題目】年底,湖北省武漢市等多個地區(qū)陸續(xù)出現(xiàn)感染新型冠狀病毒肺炎的患者,為及時有效地對疫情數(shù)據(jù)進行流行病學(xué)統(tǒng)計分析,某地研究機構(gòu)針對該地實際情況,根據(jù)該地患者是否有武漢旅行史與是否有確診病例接觸史,將新冠肺炎患者分為四類:有武漢旅行史(無接觸史),無武漢旅行史(無接觸史),有武漢旅行史(有接觸史)和無武漢旅行史(有接觸史),統(tǒng)計得到以下相關(guān)數(shù)據(jù):
有接觸史 | 無接觸史 | 總計 | |
有武漢旅行史 | |||
無武漢旅行史 | |||
總計 |
(1)請將上面列聯(lián)表填寫完整,并判斷能否在犯錯誤的概率不超過的前提下,認(rèn)為有武漢旅行史與有確診病例接觸史有關(guān)系?
(2)已知在無武漢旅行史的名患者中,有名無癥狀感染者.現(xiàn)在從無武漢旅行史的名患者中,選出名進行病例研究,求人中至少有名是無癥狀感染者的概率.
下面的臨界值表供參考:
參考公式:,其中.
【答案】(1)答案見解析,能;(2).
【解析】
(1)根據(jù)列聯(lián)表中的數(shù)據(jù)完善列聯(lián)表,并計算出的觀測值,結(jié)合臨界值表可得出結(jié)論;
(2)設(shè)名患者中名無癥狀感染者記為、,其余名記為、、、,列舉出所有的基本事件,并列舉出事件“所選人中至少有名是無癥狀感染者”所包含的基本事件,利用古典概型的概率公式可求得所求事件的概率.
(1)列聯(lián)表補充如下:
有接觸史 | 無接觸史 | 總計 | |
有武漢旅行史 | |||
無武漢旅行史 | |||
總計 |
的觀測值為,
所以能在犯錯誤的概率不超過的前提下,認(rèn)為有武漢旅行史與有確診病例接觸史有關(guān)系;
(2)設(shè)名患者中名無癥狀感染者記為、,其余名記為、、、,
從人中任取人的所有的基本事件有:、、、、、、、、、、、、、、,共種,
其中,事件“所選人中至少有名是無癥狀感染者”所包含的基本事件有:、、、、、、、、,共種,
因此,所求事件的概率為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】很多關(guān)于整數(shù)規(guī)律的猜想都通俗易懂,吸引了大量的數(shù)學(xué)家和數(shù)學(xué)愛好者,有些猜想已經(jīng)被數(shù)學(xué)家證明,如“費馬大定理”,但大多猜想還未被證明,如“哥德巴赫猜想”、“角谷猜想”.“角谷猜想”的內(nèi)容是:對于每一個正整數(shù),如果它是奇數(shù),則將它乘以再加1;如果它是偶數(shù),則將它除以;如此循環(huán),最終都能夠得到.下圖為研究“角谷猜想”的一個程序框圖.若輸入的值為,則輸出i的值為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】雙曲線的左右焦點分別為,,為坐標(biāo)原點.為曲線右支上的點,點在外角平分線上,且.若恰為頂角為的等腰三角形,則該雙曲線的離心率為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在四棱錐中,底面是邊長為2的正方形,側(cè)面為正三角形,且面面, 分別為棱的中點.
(1)求證: 平面;
(2)(文科)求三棱錐的體積;
(理科)求二面角的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的短軸長為4,離心率為,斜率不為0的直線與橢圓相交于,兩點(,異于橢圓的頂點),且以為直徑的圓過橢圓的右頂點.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)直線是否過定點,如果過定點,求出該定點的坐標(biāo);如果不過定點,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線C的方程為,以坐標(biāo)原點O為極點,x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為.
(1)求直線l的直角坐標(biāo)方程和曲線C的參數(shù)方程;
(2)已知P、Q兩點分別是曲線C和直線l上的動點,且直線的傾斜角為,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知某超市2018年12個月的收入與支出數(shù)據(jù)的折線圖如圖所示:
根據(jù)該折線圖可知,下列說法錯誤的是( )
A. 該超市2018年的12個月中的7月份的收益最高
B. 該超市2018年的12個月中的4月份的收益最低
C. 該超市2018年1-6月份的總收益低于2018年7-12月份的總收益
D. 該超市2018年7-12月份的總收益比2018年1-6月份的總收益增長了90萬元
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,點在橢圓上,焦點為,圓O的直徑為.
(1)求橢圓C及圓O的標(biāo)準(zhǔn)方程;
(2)設(shè)直線l與圓O相切于第一象限內(nèi)的點P,且直線l與橢圓C交于兩點.記 的面積為,證明:.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com