【題目】某工廠計劃建設(shè)至少3個,至多5個相同的生產(chǎn)線車間,以解決本地區(qū)公民對特供商品的未來需求.經(jīng)過對先期樣本的科學(xué)性調(diào)查顯示,本地區(qū)每個月對商品的月需求量均在50萬件及以上,其中需求量在50~ 100萬件的頻率為0.5,需求量在100~200萬件的頻率為0.3,不低于200萬件的頻率為0.2.用調(diào)查樣本來估計總體,頻率作為相應(yīng)段的概率,并假設(shè)本地區(qū)在各個月對本特供商品的需求相互獨立.
(1)求在未來某連續(xù)4個月中,本地區(qū)至少有2個月對商品的月需求量低于100萬件的概率.
(2)該工廠希望盡可能在生產(chǎn)線車間建成后,車間能正常生產(chǎn)運行,但每月最多可正常生產(chǎn)的車間數(shù)受商品的需求量的限制,并有如下關(guān)系:
商品的月需求量(萬件) | |||
車間最多正常運行個數(shù) | 3 | 4 | 5 |
若一個車間正常運行,則該車間月凈利潤為1500萬元,而一個車間未正常生產(chǎn),則該車間生產(chǎn)線的月維護費(單位:萬元)與月需求量有如下關(guān)系:
商品的月需求量(萬件) | ||
未正常生產(chǎn)的一個車間的月維護費(萬元) | 500 | 600 |
試分析并回答該工廠應(yīng)建設(shè)生產(chǎn)線車間多少個?使得商品的月利潤為最大.
【答案】(1)(2)4個
【解析】
(1)由獨立重復(fù)實驗的概率公式結(jié)合題意計算即可得解;
(2)按照建設(shè)3個車間、4個車間、5個車間討論,分別求出對應(yīng)的分布列和期望,比較期望大小即可得解.
(1)由題意每月需求量在50~ 100萬件的概率為0.5,則由獨立重復(fù)實驗概率公式可得所求概率;
(2)(i)當(dāng)建設(shè)3個車間時,由于需求量在50萬件以上,此時的凈利潤的分布列為:
4500 | |
1 |
則(萬元);
(ii)當(dāng)建設(shè)4個車間時,需求量時,則有3個車間正常運行時,會有1個車間閑置,此時的凈利潤;
需求量時,則4個車間正常運行,此時的凈利潤;
則的分布列為:
4000 | 5000 | |
0.5 | 0.5 |
則(萬元)
(iii)當(dāng)建設(shè)5個車間時,需求量時,則有3個車間正常運行時,會有2個車間閑置,此時的凈利潤;
需求量時,則4個車間正常運行,會有1個車間閑置,
此時;
需求量時,則5個車間正常運行,此時的凈利潤;
則的分布列為:
3500 | 5400 | 7500 | |
0.5 | 0.3 | 0.2 |
則(萬元)
綜上所述,要使該工廠商品的月利潤為最大,應(yīng)建設(shè)4個生產(chǎn)線車間.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的焦點在軸上,左右頂點分別是,以上的弦(異于)為直徑作圓恰好過,設(shè)直線的斜率為.
(1)若,且的面積為,求的方程.
(2)若,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有10個相同的小球,現(xiàn)全部分給甲、乙、丙3人,若甲至少得1球,乙至少得2球,丙至少得3球,則他們所得的球數(shù)的不同情況有__________種.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《高中數(shù)學(xué)課程標(biāo)準(zhǔn)》(2017版)規(guī)定了數(shù)學(xué)直觀想象學(xué)科的六大核心素養(yǎng),為了比較甲、乙兩名高二學(xué)生的數(shù)學(xué)核心素養(yǎng)水平,現(xiàn)以六大素養(yǎng)為指標(biāo)對二人進行了測驗,根據(jù)測驗結(jié)果繪制了雷達圖(如圖,每項指標(biāo)值滿分為5分,分值高者為優(yōu)),則下面敘述正確的是(注:雷達圖,又可稱為戴布拉圖、蜘蛛網(wǎng)圖,可用于對研究對象的多維分析)( )
A.甲的直觀想象素養(yǎng)高于乙
B.甲的數(shù)學(xué)建模素養(yǎng)優(yōu)于數(shù)據(jù)分析素養(yǎng)
C.乙的數(shù)學(xué)建模素養(yǎng)與數(shù)學(xué)運算素養(yǎng)一樣
D.乙的六大素養(yǎng)整體水平低于甲
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了檢測生產(chǎn)線上某種零件的質(zhì)量,從產(chǎn)品中隨機抽取100個零件,測量其尺寸,得到如圖所示的頻率分布直方圖.若零件尺寸落在區(qū)間之內(nèi),則認為該零件合格,否則認為不合格.其中,分別表示樣本的平均值和標(biāo)準(zhǔn)差,計算得(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表).
(1)已知一個零件的尺寸是,試判斷該零件是否合格;
(2)利用分層抽樣的方法從尺寸在的樣本中抽取6個零件,再從這6個零件中隨機抽取2個,求這2個零件中恰有1個尺寸小于的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】環(huán)境問題是當(dāng)今世界共同關(guān)注的問題,且多種多樣,中國環(huán)境十大問題是指大氣污染問題、水環(huán)境污染問題、垃圾處理問題、土地荒漠化和沙災(zāi)問題、水土流失問題、旱災(zāi)和水災(zāi)問題、生物多樣性破壞問題、WTO與環(huán)境問題、三峽庫區(qū)的環(huán)境問題、持久性有機物污染問題.其中大氣環(huán)境面臨的形勢非常嚴峻,大氣污染物排放總量居高不下,我國環(huán)保總局根據(jù)空氣污染指數(shù)PM2.5濃度,制定了空氣質(zhì)量標(biāo)準(zhǔn)(前者是空氣污染指數(shù),后者是空氣質(zhì)量等級):(1)優(yōu);(2)良;(3)輕度污染;(4)中度污染;(5)重度污染;(6)嚴重污染.遼寧省某市政府為了改善空氣質(zhì)量,節(jié)能減排,從2012年開始考察了連續(xù)六年12月份的空氣污染指數(shù),繪制了頻率分布直方圖如圖,經(jīng)過分析研究,決定從2018年12月1日起在空氣質(zhì)量重度污染和嚴重污染的日子對機動車輛施行限號出行,請根據(jù)這段材料回答以下兩個問題:
①若按分層抽樣的方法,從空氣質(zhì)量等級為優(yōu)與良的天氣中抽取5天,再從這5天中隨機抽取2天,求至少有一天空氣質(zhì)量是優(yōu)的概率;
②該市環(huán)保局為了調(diào)查汽車尾氣排放對空氣質(zhì)量的影響,對限行兩年來的12月份共60天的空氣質(zhì)量進行統(tǒng)計,其結(jié)果如下表:
空氣質(zhì)量 | 優(yōu) | 良 | 輕度污染 | 中度污染 | 重度污染 | 嚴重污染 |
天數(shù) | 12 | 28 | 11 | 6 | 2 | 1 |
根據(jù)限行前6年180天與限行后60天的數(shù)據(jù),計算并填寫列聯(lián)表,并回答是否有95%的把握認為空氣質(zhì)量的優(yōu)良與汽車尾氣的排放有關(guān).
空氣質(zhì)量優(yōu)、良 | 空氣質(zhì)量污染 | 總計 | |
限行前 | |||
限行后 | |||
總計 |
參考數(shù)據(jù):
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
參考公式,其中.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一款小游戲的規(guī)則如下:每輪游戲要進行三次,每次游戲都需要從裝有大小相同的2個紅球,3個白球的袋中隨機摸出2個球,若摸出的“兩個都是紅球”出現(xiàn)3次獲得200分,若摸出“兩個都是紅球”出現(xiàn)1次或2次獲得20分,若摸出“兩個都是紅球”出現(xiàn)0次則扣除10分(即獲得分).
(1)設(shè)每輪游戲中出現(xiàn)“摸出兩個都是紅球”的次數(shù)為,求的分布列;
(2)玩過這款游戲的許多人發(fā)現(xiàn),若干輪游戲后,與最初的分數(shù)相比,分數(shù)沒有增加反而減少了,請運用概率統(tǒng)計的相關(guān)知識分析解釋上述現(xiàn)象.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)無窮數(shù)列的每一項均為正數(shù),對于給定的正整數(shù),(),若是等比數(shù)列,則稱為數(shù)列.
(1)求證:若是無窮等比數(shù)列,則是數(shù)列;
(2)請你寫出一個不是等比數(shù)列的數(shù)列的通項公式;
(3)設(shè)為數(shù)列,且滿足,請用數(shù)學(xué)歸納法證明:是等比數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有關(guān)部門在某公交站點隨機抽取了100名乘客,統(tǒng)計其乘車等待時間(指乘客從進站口到乘上車的時間,乘車等待時間不超過40分鐘),將數(shù)據(jù)按,,,,,分組,繪制成如圖所示的頻率分布直方圖.
假設(shè)乘客乘車等待時間相互獨立.
(1)求抽取的100名乘客乘車等待時間的中位數(shù)(保留一位小數(shù));
(2)現(xiàn)從該車站等車的乘客中隨機抽取4人,記等車時間在的人數(shù)為,用頻率估計概率,求隨機變量的分布列與數(shù)學(xué)期望.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com