20.若sinα=$\frac{\sqrt{3}}{3}$,則cos2α=( 。
A.$-\frac{2}{3}$B.$-\frac{1}{3}$C.$\frac{1}{3}$D.$\frac{2}{3}$

分析 直接利用二倍角的余弦公式的變形,求得cos2α的值.

解答 解:∵sinα=$\frac{\sqrt{3}}{3}$,則cos2α=1-2sin2α=1-2×$\frac{1}{3}$=$\frac{1}{3}$,
故選:C.

點評 本題主要考查二倍角的余弦公式的應(yīng)用,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

20.如圖,在四棱錐P-ABCD中,底面ABCD是菱形,$∠DAB=\frac{π}{3}$,PD⊥平面ABCD,PD=AD=3,PM=2MD,AN=2NB,E是AB中點.
(Ⅰ)求證:直線AM∥平面PNC;
(Ⅱ)求證:直線CD⊥平面PDE;
(III)在AB上是否存在一點G,使得二面角G-PD-A的大小為$\frac{π}{3}$,若存在,確定G的位置,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.若全集U={1,2,3,4,5},且∁UA={2,3},則集合A={1,4,5}.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.若$z=\frac{{{{(1+i)}^4}{{(-1-\sqrt{3}i)}^7}}}{{{{(1-i)}^{12}}}}$,則|z|=8.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.函數(shù)$y=sin\frac{1}{2}x$的最小正周期為( 。
A.$\frac{π}{2}$B.πC.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.已知$\overrightarrow{{e}_{1}}$、$\overrightarrow{{e}_{2}}$為同一平面內(nèi)兩個不共線的向量,且$\overrightarrow{AB}$=2$\overrightarrow{{e}_{1}}$+k$\overrightarrow{{e}_{2}}$,$\overrightarrow{CB}$=$\overrightarrow{{e}_{1}}$+3$\overrightarrow{{e}_{2}}$,$\overrightarrow{CD}$=2$\overrightarrow{{e}_{1}}$-$\overrightarrow{{e}_{2}}$,若A、B、D三點共線,則k=-8.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.三個數(shù)a=0.412,b=log20.41,c=20.41之間的大小關(guān)系為( 。
A.a<c<bB.a<b<cC.b<c<aD.b<a<c

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.已知四面體P-ABC的四個頂點都在球O的球面上,若PB⊥平面ABC,AB⊥AC,且AC=2$\sqrt{2}$,PB=AB=2,則球O的表面積為16π.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.設(shè)復(fù)數(shù)z滿足z•i=2+3i,則z=3-2i.

查看答案和解析>>

同步練習冊答案