A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
分析 利用復(fù)數(shù)的運(yùn)算法則進(jìn)行化簡(jiǎn),求出z的共軛復(fù)數(shù)即可.
解答 解:∵復(fù)數(shù)z滿足(1+i)(z+1)+1-i=0,
∴z+1=$\frac{-1+i}{1+i}$,
∴z=-1+$\frac{-1+i}{1+i}$=-1+$\frac{(-1+i)(1-i)}{(1+i)(1-i)}$=-1+i,
∴復(fù)數(shù)$\overline z$=-1-i;
∴$\overline{z}$所對(duì)應(yīng)的點(diǎn)在在第三象限.
故選:C.
點(diǎn)評(píng) 本題考查了復(fù)數(shù)的化簡(jiǎn)與運(yùn)算問題,也考查了共軛復(fù)數(shù)的應(yīng)用問題,是基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 直線x=-2對(duì)稱 | B. | 直線x=2對(duì)稱 | C. | 點(diǎn)(2,-1)對(duì)稱 | D. | 點(diǎn)(-2,1)對(duì)稱 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | z2>0 | B. | $z•\overline z>0$ | C. | |z|=25 | D. | $\overline z=-3+4i$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{3}$ | B. | $\frac{\sqrt{3}}{3}$ | C. | $\frac{\sqrt{15}}{15}$ | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
X | -1 | 0 | 1 | 2 |
P | a | b | c | $\frac{1}{12}$ |
A. | $\frac{1}{2}$ | B. | $\frac{2}{5}$ | C. | $\frac{3}{4}$ | D. | $\frac{2}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 若ξ服從正態(tài)分布N(0,2),且P(ξ>2)=0.4,則P(0<ξ<2)=0.2 | |
B. | x=1是x2-x=0的必要不充分條件 | |
C. | 直線ax+y+2=0與ax-y+4=0垂直的充要條件為a=±1 | |
D. | “若xy=0,則x=0或y=0”的逆否命題為“若x≠0或y≠0,則xy≠0” |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com