A是△BCD所在平面外一點,M、N分別是△ABC和△ACD的重心,若BC=5,CD=8,∠BCD=60°,則MN的長為
 
分析:本題考查的知識點是余弦定理和平行線分線段成比例定理,由BC=5,CD=8,∠BCD=60°,結(jié)合余弦定理,我們易得BD的長,又由M、N分別是△ABC和△ACD的重心,延長AM交BC于P,延長AN交CD于Q,易得PQ為△BCD的中位線,AM:AP=AN:AQ=2:3,將BD長代入即可得到答案.
解答:精英家教網(wǎng)解:∵BC=5,CD=8,∠BCD=60°
由余弦定理得:BD=7
延長AM交BC于P,延長AN交CD于Q,
則∵M、N分別是△ABC和△ACD的重心
∴PQ分別BC,CD的中點,
則PQ為△BCD的中位線
∴PQ∥BD且PQ=
BD
2
=
7
2

∵AM:AP=AN:AQ=2:3
∴MN=
2
3
PQ=
7
3

故答案為:
7
3
點評:當(dāng)我們已知三角形三邊之長求三個角,或是已知三角形兩邊長及一個夾角求另一邊時,常使用余弦定理處理.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)A是△BCD所在平面外一點,M、N分別是△ABC和△ACD的重心,若BD=4,試求MN的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A是△BCD所在平面外一點,M、N分別是△ABC和△ACD的重心,若BD=a,則MN=
a
3
a
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,點A是△BCD所在平面外一點,AD=BC,E、F分別是AB、CD的中點.
(1)若EF=
2
2
AD,求異面直線AD與BC所成的角;
(2)若EF=
3
2
AD,求異面直線AD與BC所成的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

A是△BCD所在平面外一點,M、N分別是△ABC和△ACD的重心,若BD=6,則MN=
 

查看答案和解析>>

同步練習(xí)冊答案