分析 由“理想函數(shù)”的定義可知:若f(x)是“理想函數(shù)”,則f(x)為定義域上的單調(diào)遞增的奇函數(shù),將四個函數(shù)一一判斷即可.
解答 解:若f(x)是“理想函數(shù)”,則滿足以下兩條:
①對于定義域上的任意x,恒有f(x)+f(-x)=0,即f(-x)=-f(x),則函數(shù)f(x)是奇函數(shù);
②對于定義域上的任意x1,x2,當(dāng)x1≠x2時,恒有$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}>0$,即(x1-x2)[f(x1)-f(x2)]>0,∴x1<x2時,f(x1)<f(x2),即函數(shù)f(x)是單調(diào)遞增函數(shù).
故f(x)為定義域上的單調(diào)遞增的奇函數(shù).
(1)f(x)=x在定義域R上既是奇函數(shù),又是增函數(shù),所以是“理想函數(shù)”;
(2)f(x)=$\frac{1}{x}$在定義域上不是增函數(shù),所以不是“理想函數(shù)”;
(3)f(x)=x2在定義域R上不是奇函數(shù),所以不是“理想函數(shù)”;
(4)由圖象可知,f(x)=$\left\{\begin{array}{l}{-{x}^{2},x≤0}\\{{x}^{2},x>0}\end{array}\right.$在定義域R上既是奇函數(shù),又是增函數(shù),所以是“理想函數(shù)”.
故答案為:(1)(4)
點評 本題考查新定義的理解和運(yùn)用,主要考查函數(shù)的奇偶性和單調(diào)性,注意運(yùn)用定義法是解題的關(guān)鍵,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 8 | B. | 6 | C. | 9 | D. | 7 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充分不必要 | B. | 必要不充分 | ||
C. | 充分必要 | D. | 既不充分也不必要 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0<r<2 | B. | 0<r<1 | C. | r>2 | D. | 1<r<2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1+π}{π}$ | B. | $\frac{1+2π}{π}$ | C. | $\frac{1+2π}{2π}$ | D. | $\frac{1+4π}{2π}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{7}{16}$ | B. | $\frac{1}{4}$ | C. | $-\frac{9}{16}$ | D. | $\frac{3}{4}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com