5.若$\overrightarrow a=(1,\sqrt{3})$,$\overrightarrow b=(3,0)$,則$\overrightarrow a,\overrightarrow b$的夾角為( 。
A.$\frac{π}{3}$B.$\frac{2π}{3}$C.$\frac{π}{6}$D.$\frac{5π}{6}$

分析 利用查兩個向量的數(shù)量積的定義,求得cosθ的值,可得$\overrightarrow{a}$、$\overrightarrow$的夾角θ的值.

解答 解:若$\overrightarrow a=(1,\sqrt{3})$,$\overrightarrow b=(3,0)$,設$\overrightarrow a,\overrightarrow b$的夾角為θ,則cosθ=$\frac{\overrightarrow{a}•\overrightarrow}{|\overrightarrow{a}|•|\overrightarrow|}$=$\frac{3+0}{2•3}$=$\frac{1}{2}$,
∴θ=$\frac{π}{3}$,
故選:A.

點評 本題主要考查兩個向量的數(shù)量積的定義,根據(jù)三角函數(shù)的值求角,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

13.已知向量$\overrightarrow{a}$,$\overrightarrow$滿足|$\overrightarrow{a}$|=$\sqrt{5}$,$\overrightarrow$=(4,2).
(1)若$\overrightarrow{a}$∥$\overrightarrow$,求$\overrightarrow{a}$的坐標;
(2)若$\overrightarrow{a}$-$\overrightarrow$與5$\overrightarrow{a}$+2$\overrightarrow$垂直,求$\overrightarrow{a}$與$\overrightarrow$的夾角θ的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.如圖所示,在四棱臺ABCD-A1B1C1D1中,底面ABCD是平行四邊形,DD1⊥平面ABCD,AB=2AD,AD=A1B1,∠BAD=60°.
(Ⅰ)證明:BD⊥平面ADD1A1;
(Ⅱ)證明:CC1∥平面A1BD;
(Ⅲ)若DD1=AD,求直線CC1與平面ADD1A1所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.下列命題中為真命題的是( 。
A.命題“若x>1,則x2>1”的否命題B.命題“若x>y,則x>|y|”的逆命題
C.命題“若x=1,則x2+x-2=0”的否命題D.命題“若x2≥1,則x≥1”的逆否命題

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.下列變量關系是函數(shù)關系的是(  )
A.三角形的邊長與面積之間的關系
B.等邊三角形的邊長與面積之間的關系
C.四邊形的邊長與面積之間的關
D.菱形的邊長與面積之間的關

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.若x~N(4,1)且f(x<3)=0.0187,則f(x<5)=0.9813.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.P為雙曲線$C:\frac{x^2}{a^2}-\frac{y^2}{{{a^2}-4}}=1(a>2)$上位于第一象限內一點,且$OP=2\sqrt{2}$,令∠POx=θ,則θ的取值范圍是(0,$\frac{π}{12}$].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.對于定義在D上的函數(shù)f(x),點A(m,n)是f(x)圖象的一個對稱中心的充要條件是:對任意x∈D都有f(x)+f(2m-x)=2n,現(xiàn)給出下列三個函數(shù):
(1)f(x)=x3+2x2+3x+4
(2)$f(x)=\frac{1}{x+1}+\frac{1}{x+2}+…+\frac{1}{x+2015}$
(3)$h(x)={log_2}\frac{x}{4-x}$
這三個函數(shù)中,圖象存在對稱中心的有( 。
A.0個B.1個C.2個D.3個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.求函數(shù)y=lg(sin2x+2cosx+2)在$x∈[{-\frac{π}{6}\;,\;\;\frac{2π}{3}}]$上的最大值lg4,最小值lg$\frac{7}{4}$.

查看答案和解析>>

同步練習冊答案