已知周期函數(shù)f(x)是定義在R上的奇函數(shù),且f(x)的最小正周期為3,f(1)<2,f(2)=m,則m的取值范圍為(  )
分析:利用已知條件可將m化為m=f(2)轉(zhuǎn)化為:f(2)=-f(1),從而可解決問題.
解答:解:∵函數(shù)f(x)是定義在R上的奇函數(shù),且f(x)的最小正周期為3,
∴f(2)=f(2-3)=f(-1)=-f(1),又f(1)<2,f(2)=m,
∴m=-f(1)>-2,
∴m>-2.
故選D.
點評:本題考查函數(shù)奇偶性、周期性相結(jié)合的問題,將m化為m=-f(1)是關鍵,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

10、已知周期函數(shù)f(x)是定義在R上的奇函數(shù),且f(x)的最小正周期為3,f(1)<2,f(2)=m,則m的取值范圍為
(-2,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

12、已知周期函數(shù)f(x)是奇函數(shù),6是的f(x)一個周期,而且f(-1)=1,則f(-5)=
-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•泉州模擬)已知周期函數(shù)f(x)的定義域為R,周期為2,且當-1<x≤1時,f(x)=1-x2.若直線y=-x+a與曲線y=f(x)恰有2個交點,則實數(shù)a的所有可能取值構成的集合為(  )

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知周期函數(shù)f(x)是定義在R上的奇函數(shù),且f(x)的最小正周期為3,f(1)<2,f(2)=m,則m的取值范圍為 ______.

查看答案和解析>>

同步練習冊答案