【題目】設(shè)函數(shù)f(x)=lnx﹣ax,g(x)=ex﹣3ax,其中a為實(shí)數(shù),若f(x)在(1,+∞)上是單調(diào)減函數(shù),且g(x)在(1,+∞)上有最小值,則a的取值范圍是( )
A.( ,+∞)
B.[ ,+∞)
C.(1,+∞)
D.[1,+∞)
【答案】D
【解析】解:f′(x)= ﹣a, 若f(x)在(1,+∞)上是單調(diào)減函數(shù),
則f′(x)≤0在(1,+∞)恒成立,
即a≥ 在(1,+∞)恒成立,
故a≥1;
g(x)=ex﹣3ax,g′(x)=ex﹣3a,
若g(x)在(1,+∞)上有最小值,
則g(x)在(1,+∞)先遞減再遞增,
故y=3a和y=ex在(1,+∞)有解,
而y=ex>e,
故3a>e,a> ,
綜上,a≥1,
故選:D.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性的相關(guān)知識,掌握一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負(fù)有如下關(guān)系: 在某個(gè)區(qū)間內(nèi),(1)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞減.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知焦點(diǎn)在x軸上,中心在坐標(biāo)原點(diǎn)的橢圓C的離心率為 ,且過點(diǎn)( ,1). (Ⅰ)求橢圓C的方程;
(Ⅱ)直線l分別切橢圓C與圓M:x2+y2=R2(其中3<R<5)于A、B兩點(diǎn),求|AB|的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ax3+bx2﹣2x+c在x=﹣2時(shí)有極大值6,在x=1時(shí)有極小值,
(1)求a,b,c的值;
(2)求f(x)在區(qū)間[﹣3,3]上的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)A(﹣1,0),B(1,0),直線AM與直線BM相交于點(diǎn)M,直線AM與直線BM的斜率分別記為kAM與kBM , 且kAMkBM=﹣2 (Ⅰ)求點(diǎn)M的軌跡C的方程;
(Ⅱ)過定點(diǎn)F(0,1)作直線PQ與曲線C交于P,Q兩點(diǎn),△OPQ的面積是否存在最大值?若存在,求出△OPQ面積的最大值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知兩曲線f(x)= x2+ax與g(x)=2a2lnx+b有公共點(diǎn),且在該點(diǎn)處有相同的切線,則a∈(0,+∞)時(shí),實(shí)數(shù)b的最大值是( )
A.e
B.2e
C.e
D. e
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,角A、B、C所對的邊分別為a,b,c,已知
(Ⅰ)求sinC的值;
(Ⅱ)當(dāng)a=2,2sinA=sinC時(shí),求b及c的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列 是公差不為0的等差數(shù)列, ,且 , , 成等比數(shù)列.
(1)求數(shù)列 的通項(xiàng)公式;
(2)設(shè) ,求數(shù)列 的前 項(xiàng)和 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】四棱錐S﹣ABCD的底面ABCD是正方形,各側(cè)棱長與底面的邊長均相等,M為SA的中點(diǎn),則直線BM與SC所成的角的余弦值為( )
A.
B.
C.
D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com