分析 (1)利用三角函數(shù)恒等變換的應(yīng)用化簡已知可解得:cos2A=-$\frac{1}{2}$,結(jié)合2A∈(0,2π),可得A的值.
(2)由b≥a,由(1)可得:A=$\frac{π}{3}$,又a=$\sqrt{3}$,由正弦定理可得:$\frac{sinB}=\frac{c}{sinC}$=2,從而利用三角函數(shù)恒等變換的應(yīng)用可得2b-c=2$\sqrt{3}$sin(B-$\frac{π}{6}$),結(jié)合范圍B-$\frac{π}{6}$∈[$\frac{π}{6}$,$\frac{π}{2}$),可得2b-c取值范圍.
解答 解:(1)∵cos2C-cos2A=2sin($\frac{π}{3}$+C)•sin($\frac{π}{3}$-C)
=2($\frac{\sqrt{3}}{2}$cosC+$\frac{1}{2}$sinC)($\frac{\sqrt{3}}{2}$cosC-$\frac{1}{2}$sinC)
=$\frac{3}{2}$cos2C-$\frac{1}{2}$sin2C
=$\frac{3}{2}$•$\frac{1+cos2C}{2}$-$\frac{1}{2}$•$\frac{1-cos2C}{2}$
=$\frac{1}{2}$+cos2C,
∴-cos2A=$\frac{1}{2}$,解得:cos2A=-$\frac{1}{2}$.
∵A∈(0,π),2A∈(0,2π),
∴當(dāng)2A=$\frac{2π}{3}$時(shí),解得:A=$\frac{π}{3}$,
當(dāng)2A=$\frac{4π}{3}$時(shí),解得:A=$\frac{2π}{3}$.
(2)∵b≥a,∴A為銳角,由(1)可得:A=$\frac{π}{3}$,
又∵a=$\sqrt{3}$,
∴由正弦定理可得:$\frac{\sqrt{3}}{sin\frac{π}{3}}$=$\frac{sinB}=\frac{c}{sinC}$=2,
∴2b-c=2(2sinB-sinC)=4sinB-2sin($\frac{2π}{3}$-B)=4sinB-($\sqrt{3}$cosB+sinB)=3sinB-$\sqrt{3}$cosB=2$\sqrt{3}$sin(B-$\frac{π}{6}$),
∵B∈[$\frac{π}{3}$,$\frac{2π}{3}$),B-$\frac{π}{6}$∈[$\frac{π}{6}$,$\frac{π}{2}$),可得sin(B-$\frac{π}{6}$)∈[$\frac{1}{2}$,1),
∴2b-c=2$\sqrt{3}$sin(B-$\frac{π}{6}$)∈[$\sqrt{3}$,2$\sqrt{3}$).
點(diǎn)評 本題主要考查了三角函數(shù)恒等變換的應(yīng)用,考查了正弦定理,正弦函數(shù)的圖象和性質(zhì)在解三角形中的應(yīng)用,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (1,1) | B. | (1,-1) | C. | (-1,1) | D. | (-1,-1) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 72 | B. | 80 | C. | 120 | D. | 144 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-2,3) | B. | (1,2) | C. | (2,3) | D. | (2,4) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (2,4) | B. | [2,4] | C. | [2,4) | D. | [$\sqrt{5}$,4) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com