12.點(diǎn)P是長(zhǎng)軸在x軸上的橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1上的動(dòng)點(diǎn),F(xiàn)1,F(xiàn)2分別為橢圓的兩個(gè)焦點(diǎn),橢圓的半焦距為c,則|PF1|•|PF2|的最大值是( 。
A.a2B.1C.b2D.c2

分析 由|PF1|•|PF2|=(a-ex)(a+ex)=a2-e2x2,由此可求出|PF1|•|PF2|的最大值.

解答 解:由焦半徑公式|PF1|=a-ex,|PF2|=a+ex
|PF1|•|PF2|=(a-ex)(a+ex)=a2-e2x2,x∈[-a,a],
則|PF1|•|PF2|的最大值是a2,
故選:A.

點(diǎn)評(píng) 本題考查了橢圓的性質(zhì),考查橢圓的焦半徑公式,考查二次函數(shù)最值,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知公差不為零的等差數(shù)列{an}滿足a1=1,a2是a1與a5的等比中項(xiàng).
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)bn=2an,判斷數(shù)列{bn}是否為等比數(shù)列.如果是,求數(shù)列{bn}的前n項(xiàng)和Sn,如果不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知數(shù)列{an}的前n項(xiàng)和為Sn,且Sn=$\frac{3}{2}$an-$\frac{3}{2}$,數(shù)列{bn}中,b1=1,點(diǎn)P(bn,bn+1)在直線x-y+2=0上.
(1)求數(shù)列{an},{bn}的通項(xiàng)an和bn;
(2)設(shè)cn=an•bn,求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知函數(shù)f(x)=(${\frac{1}{a}}$)|x-2|,若f(0)=$\frac{1}{4}$,則函數(shù)f(x)的單調(diào)遞減區(qū)間是( 。
A.[2,+∞)B.(-∞,2]C.[-2,+∞)D.(-∞,-2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.在△ABC中,內(nèi)角A,B,C的對(duì)邊分別為a,b,c,已知a=bcosC+csinB,b=2,則△ABC面積的最大值為$\sqrt{2}+1$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知橢圓C的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在x軸上,橢圓C上的點(diǎn)到焦點(diǎn)距離的最大值為3,最小值為1.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)若直線l:y=x+m與橢圓C有交點(diǎn),求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.某班學(xué)生一次數(shù)學(xué)考試成績(jī)頻率分布直方圖如圖所示,數(shù)據(jù)分組依次為[70,90),[90,110),[110,130),[130,150],若成績(jī)大于等于90分的人數(shù)為36,則成績(jī)?cè)赱110,130)的人數(shù)為( 。
A.12B.9C.15D.18

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.函數(shù)f(x)=|x-3|-ln(x+1)在定義域內(nèi)零點(diǎn)的個(gè)數(shù)為(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.如果函數(shù)f(x)=x2+(1-a)x+3在區(qū)間[1,4]上是單調(diào)函數(shù),那么實(shí)數(shù)a的取值范圍是( 。
A.a≥9或a≤3B.a≥7或a≤3C.a>9或a<3D.3≤a≤9

查看答案和解析>>

同步練習(xí)冊(cè)答案