11.已知p:方程x2+mx+1=0有兩個不等的正實數(shù)根,若¬p是真命題,則實數(shù)m的取值范圍為[-2,+∞).

分析 借助一元二次函數(shù)圖象,分析命題p為真的等價條件,求出m的范圍;即可求解¬p是真命題,實數(shù)m的取值范圍.

解答 解:∵方程x2+mx+1=0有兩個不等的正實數(shù)根,
∴$\left\{\begin{array}{l}{-\frac{m}{2}>0}\\{△={m}^{2}-4>0}\end{array}\right.$⇒m<-2,
∴若¬p是真命題,m的取值范圍是m≥-2;
故答案為:[-2,+∞).

點評 本題考查命題的真假判定,考查了一元二次方程根的判定,本題的關鍵是求命題p為真時m的范圍.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

1.已知$\overrightarrow{a}$=(2,m),$\overrightarrow$=(m+1,3).
(1)若$\overrightarrow{a}$⊥$\overrightarrow$,求m的值;
(2)若$\overrightarrow{a}$∥$\overrightarrow$,求m的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.給出一個如圖所示的程序框圖,若要使輸入的x值與輸出的y值相等,則這樣的x值的個數(shù)是( 。
A.5B.4C.3D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.已知數(shù)列{an}的前n項和為Sn,Sn+1=an+1+n2
(1)求數(shù)列{an}的通項公式;
(2)若bn=2an,求{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.已知命題p:x∈A,且A={x|a-1<x<a+1},命題q:x∈B,且B={x|y=lg(x2-3x+2)}.
(1)若A∪B=R,求實數(shù)a的取值范圍;
(2)若¬q是¬p的充分條件,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.已知集合A={x|3≤x<7},B={x|2<x<10},C={x|2a<x<2a+1}.
(1)求(∁RA)∩B;
(2)若B∪C=B,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.如圖給出的是計算1+$\frac{1}{3}$+$\frac{1}{5}$+…+$\frac{1}{2017}$的值的一個程序框圖,則圖中執(zhí)行框中的①處和判斷框中的②處應填的語句是( 。
A.n=n+1,i>1009B.n=n+2,i>1009C.n=n+1,i>1010D.n=n+2,i>1010

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.設A,B,C,D,是平面直角坐標系中不同的四點,若$\overrightarrow{AC}$=λ$\overrightarrow{AB}$(λ∈R),且$\frac{1}{λ}$+$\frac{1}{μ}$=2,則稱C,D是關于A,B的“好點對”.已知M,N是關于A,B的“好點對”,則下面說法正確的是( 。
A.M可能是線段AB的中點
B.M,N 可能同時在線段BA延長線上
C.M,N 可能同時在線段AB上
D.M,N不可能同時在線段AB的延長線上

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.已知橢圓C:$\frac{{x}^{2}}{5}$+$\frac{{y}^{2}}{4}$=1,其左右焦點分別為F1、F2,過橢圓的左焦點F1作一條傾斜角為45°的直線與橢圓交于A,B兩點
(1)求三角形ABF2的周長;
(2)求弦長|AB|.

查看答案和解析>>

同步練習冊答案