【題目】已知圓關(guān)于直線對稱,圓心C在第二象限,半徑為

(1)求圓C的方程.

(2)是否存在直線l與圓C相切,且在x軸、y軸上的截距相等?若存在,寫出滿足條件的直線條數(shù)(不要求過程);若不存在,說明理由.

【答案】(1);(2)存在,4.

【解析】

1)圓關(guān)于直線對稱,則圓心在直線上,設(shè)圓的標(biāo)準(zhǔn)方程,即可求解;

2)分直線過原點(diǎn)和不過原點(diǎn)兩類情況,討論直線和圓相切分別求解.

1)圓關(guān)于直線對稱,則圓心在直線上,

設(shè)圓心,在第二象限,則,即

圓的標(biāo)準(zhǔn)方程為:

化為一般方程:,

,解得:,或(舍去),

所以圓C的方程:;

2)由題直線l與圓C相切,直線在x軸、y軸上的截距相等,

當(dāng)直線過原點(diǎn)時,斜率必存在,設(shè)斜率為,直線方程與圓相切,

則圓心到直線距離等于半徑,即,

,有兩個不等實(shí)根,即有兩條過原點(diǎn)的直線與圓相切;

當(dāng)直線不過原點(diǎn)時,設(shè)直線方程與圓相切,

,得,解得,兩條直線,

所以一共4條直線.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的兩個焦點(diǎn)分別為,離心率為,過的直線與橢圓交于兩點(diǎn),且的周長為

1)求橢圓的方程;

2)若直線與橢圓分別交于兩點(diǎn),且,試問點(diǎn)到直線的距離是否為定值,證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線.

(1)若直線經(jīng)過拋物線的焦點(diǎn),求拋物線的準(zhǔn)線方程;

(2)若斜率為-1的直線經(jīng)過拋物線的焦點(diǎn),且與拋物線交于兩點(diǎn),當(dāng)時,求拋物線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù).已知曲線在點(diǎn)處的切線與直線垂直.

1)求的值;

2)求函數(shù)的極值點(diǎn);

3)若對于任意,總存在,使得成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線, .

(1)當(dāng)時,直線的交點(diǎn),且它在兩坐標(biāo)軸上的截距相反,求直線的方程;

(2)若坐標(biāo)原點(diǎn)到直線的距離為,判斷的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《數(shù)書九章》中對已知三角形三邊長求三角形的面積的求法填補(bǔ)了我國傳統(tǒng)數(shù)學(xué)的一個空白,與著名的海倫公式完全等價,由此可以看出我國古代已具有很高的數(shù)學(xué)水平,其求法是:“以小斜冪并大斜冪減中斜冪,余半之,自乘于上,以小斜冪乘大斜冪減上,余四約之,為實(shí).一為從隅,開平方得積.”若把以上這段文字寫成公式,即.已知滿足 .且,則用以上給出的公式可求得的面積為____

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),以原點(diǎn)為極點(diǎn),以軸的正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,

(Ⅰ)求曲線的普通方程和曲線的直角坐標(biāo)方程;

(Ⅱ)設(shè)點(diǎn),曲線與曲線交于兩點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】是雙曲線上一點(diǎn), 分別是雙曲線的左、右頂點(diǎn),直線的斜率之積為.

(1)求雙曲線的離心率;

(2)過雙曲線的右焦點(diǎn)且斜率為的直線交雙曲線于兩點(diǎn), 為坐標(biāo)原點(diǎn), 為雙曲線上一點(diǎn),滿足,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓x2y2x6y3=0與直線x2y3=0的兩個交點(diǎn)為P、Q,求以PQ為直徑的圓的方程.

查看答案和解析>>

同步練習(xí)冊答案