【題目】已知橢圓的兩個焦點(diǎn)分別為,離心率為,過的直線與橢圓交于兩點(diǎn),且的周長為
(1)求橢圓的方程;
(2)若直線與橢圓分別交于兩點(diǎn),且,試問點(diǎn)到直線的距離是否為定值,證明你的結(jié)論.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的中心在原點(diǎn),焦點(diǎn)在軸上,離心率為,且過點(diǎn)P。
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)已知斜率為1的直線l過橢圓的右焦點(diǎn)F交橢圓于A.B兩點(diǎn),求弦AB的長。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在多面體中,為等邊三角形, ,點(diǎn)為邊的中點(diǎn).
(Ⅰ)求證:平面;
(Ⅱ)求證:平面平面;
(Ⅲ)求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(1)若,求函數(shù)的單調(diào)區(qū)間;
(2)若關(guān)于的不等式在上恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,某公園內(nèi)有兩條道路,,現(xiàn)計劃在上選擇一點(diǎn),新建道路,并把所在的區(qū)域改造成綠化區(qū)域.已知, .
(1)若綠化區(qū)域的面積為1,求道路的長度;
(2)若綠化區(qū)域改造成本為10萬元/,新建道路成本為10萬元/.設(shè)(),當(dāng)為何值時,該計劃所需總費(fèi)用最?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在棱長為2的正方體中,點(diǎn)分別在棱上,滿足,且.
(1)試確定兩點(diǎn)的位置.
(2)求二面角大小的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)在平行于軸的直線上,且與軸的交點(diǎn)為,動點(diǎn)滿足平行于軸,且.
(1)求出點(diǎn)的軌跡方程.
(2)設(shè)點(diǎn),,求的最小值,并寫出此時點(diǎn)的坐標(biāo).
(3)過點(diǎn)的直線與點(diǎn)的軌跡交于.兩點(diǎn),求證.兩點(diǎn)的橫坐標(biāo)乘積為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C過點(diǎn) ,兩個焦點(diǎn).
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)設(shè)直線l交橢圓C于A,B兩點(diǎn),且|AB|=6,求△AOB面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓關(guān)于直線對稱,圓心C在第二象限,半徑為.
(1)求圓C的方程.
(2)是否存在直線l與圓C相切,且在x軸、y軸上的截距相等?若存在,寫出滿足條件的直線條數(shù)(不要求過程);若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com