分析 通過an+an-1=1(n≥2)與an+1+an=1作差可知數(shù)列中奇數(shù)項、偶數(shù)項均分別相等,進(jìn)而可得結(jié)論.
解答 解:∵a1=1,an+an-1=1(n≥2),
∴an+1+an=1,
兩式相減得:an-1=an+1(n≥2),
即奇數(shù)項、偶數(shù)項均分別相等,
又∵a2=1-a1=1-1=0,
∴數(shù)列{an}的通項公式${a}_{n}=\left\{\begin{array}{l}{1,}&{n為奇數(shù)}\\{0,}&{n為偶數(shù)}\end{array}\right.$,
故答案為:${a}_{n}=\left\{\begin{array}{l}{1,}&{n為奇數(shù)}\\{0,}&{n為偶數(shù)}\end{array}\right.$.
點(diǎn)評 本題考查數(shù)列的通項,注意解題方法的積累,屬于基礎(chǔ)題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0.65<log0.65<50.6 | B. | 0.65<50.6<log0.65 | ||
C. | log0.65<0.65<50.6 | D. | log0.65<50.6<0.65 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com