分析 (1)化簡(jiǎn)$\frac{{a}^{\frac{2}{3}}\sqrt}{{a}^{-\frac{1}{2}}\root{3}}$•($\frac{{a}^{-1}\sqrt{^{-1}}}{b\sqrt{a}}$)${\;}^{\frac{3}{2}}$=$\frac{{a}^{\frac{2}{3}}^{\frac{1}{2}}}{{a}^{-\frac{1}{2}}^{\frac{1}{3}}}$•($\frac{{a}^{-1}^{-\frac{1}{2}}}{b{a}^{\frac{1}{2}}}$)${\;}^{\frac{3}{2}}$,從而解得;
(2)$\frac{{a}^{\frac{4}{3}}-8{a}^{\frac{1}{3}}b}{4^{\frac{2}{3}}+2\root{3}{ab}+{a}^{\frac{2}{3}}}$÷(1-2$\root{3}{\frac{a}}$)$•\root{3}{a}$=$\frac{{a}^{\frac{1}{3}}(a-8b)}{4^{\frac{2}{3}}+2{a}^{\frac{1}{3}}^{\frac{1}{3}}+{a}^{\frac{2}{3}}}$×$\frac{{a}^{\frac{1}{3}}}{{a}^{\frac{1}{3}}-2^{\frac{1}{3}}}$×${a}^{\frac{1}{3}}$,利用立方差公式解得.
解答 解:(1)$\frac{{a}^{\frac{2}{3}}\sqrt}{{a}^{-\frac{1}{2}}\root{3}}$•($\frac{{a}^{-1}\sqrt{^{-1}}}{b\sqrt{a}}$)${\;}^{\frac{3}{2}}$
=$\frac{{a}^{\frac{2}{3}}^{\frac{1}{2}}}{{a}^{-\frac{1}{2}}^{\frac{1}{3}}}$•($\frac{{a}^{-1}^{-\frac{1}{2}}}{b{a}^{\frac{1}{2}}}$)${\;}^{\frac{3}{2}}$
=${a}^{\frac{2}{3}+\frac{1}{2}-\frac{3}{2}-\frac{1}{2}}$•$^{\frac{1}{2}-\frac{1}{3}-\frac{3}{4}-\frac{3}{2}}$
=${a}^{-\frac{5}{6}}$$^{-\frac{25}{12}}$;
(2)$\frac{{a}^{\frac{4}{3}}-8{a}^{\frac{1}{3}}b}{4^{\frac{2}{3}}+2\root{3}{ab}+{a}^{\frac{2}{3}}}$÷(1-2$\root{3}{\frac{a}}$)$•\root{3}{a}$
=$\frac{{a}^{\frac{1}{3}}(a-8b)}{4^{\frac{2}{3}}+2{a}^{\frac{1}{3}}^{\frac{1}{3}}+{a}^{\frac{2}{3}}}$×$\frac{{a}^{\frac{1}{3}}}{{a}^{\frac{1}{3}}-2^{\frac{1}{3}}}$×${a}^{\frac{1}{3}}$
=a.
點(diǎn)評(píng) 本題考查了根式的化簡(jiǎn)與立方差公式的應(yīng)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-2,2) | B. | (6,+∞) | C. | (2,6) | D. | (2,+∞) |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com