【題目】為了研究不同性別在處理多任務(wù)時(shí)的表現(xiàn)差異,召集了男女志愿者各200名,要求他們同時(shí)完成多個(gè)任務(wù),包括解題、讀地圖、接電話.下圖表示了志愿者完成任務(wù)所需的時(shí)間分布.以下結(jié)論,對(duì)志愿者完成任務(wù)所需的時(shí)間分布圖表理解正確的是( )
①總體看女性處理多任務(wù)平均用時(shí)更短;
②所有女性處理多任務(wù)的能力都要優(yōu)于男性;
③男性的時(shí)間分布更接近正態(tài)分布;
④女性處理多任務(wù)的用時(shí)為正數(shù),男性處理多任務(wù)的用時(shí)為負(fù)數(shù).
A.①④B.②③C.①③D.②④
【答案】C
【解析】
圖像為對(duì)志愿者完成任務(wù)所需的時(shí)間分布圖表,利用圖像依次分析即可
由圖,女性處理多任務(wù)用時(shí)主要集中在2到3分鐘,男性處理多任務(wù)用時(shí)主要集中在3到4分鐘,故總體來(lái)看女性處理多任務(wù)用時(shí)更短,故①正確;
女性中也有處理多任務(wù)用時(shí)在5分鐘的,并不是所有女性處理多任務(wù)能力都要優(yōu)于男性,故②錯(cuò)誤;
從圖像上來(lái)看男性的時(shí)間分布更接近正態(tài)分布,故③正確;
男性、女性處理多任務(wù)的用時(shí)均為正數(shù),故④錯(cuò)誤;
綜上,①③正確,
故選:C
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)若方程2[f(x)]2﹣5tf(x)+3t2=0恰有4個(gè)不同的實(shí)根,則實(shí)數(shù)t的取值范圍為(參考數(shù)據(jù):ln2≈0.6931)( )
A.(,)
B.(,)
C.(,2﹣2ln2)∪(,1)
D.(,2﹣1n2)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)曲線E的方程為1,動(dòng)點(diǎn)A(m,n),B(﹣m,n),C(﹣m,﹣n),D(m,﹣n)在E上,對(duì)于結(jié)論:①四邊形ABCD的面積的最小值為48;②四邊形ABCD外接圓的面積的最小值為25π.下面說(shuō)法正確的是( )
A.①錯(cuò),②對(duì)B.①對(duì),②錯(cuò)C.①②都錯(cuò)D.①②都對(duì)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,圓柱的軸截面是邊長(zhǎng)為2的正方形,點(diǎn)是圓弧上的一動(dòng)點(diǎn)(不與重合),點(diǎn)是圓弧的中點(diǎn),且點(diǎn)在平面的兩側(cè).
(1)證明:平面平面;
(2)設(shè)點(diǎn)在平面上的射影為點(diǎn),點(diǎn)分別是和的重心,當(dāng)三棱錐體積最大時(shí),回答下列問(wèn)題.
(。┳C明:平面;
(ⅱ)求平面與平面所成二面角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2018年中秋節(jié)到來(lái)之際,某超市為了解中秋節(jié)期間月餅的銷售量,對(duì)其所在銷售范圍內(nèi)的1000名消費(fèi)者在中秋節(jié)期間的月餅購(gòu)買量單位:進(jìn)行了問(wèn)卷調(diào)查,得到如下頻率分布直方圖:
求頻率分布直方圖中a的值;
以頻率作為概率,試求消費(fèi)者月餅購(gòu)買量在的概率;
已知該超市所在銷售范圍內(nèi)有20萬(wàn)人,并且該超市每年的銷售份額約占該市場(chǎng)總量的,請(qǐng)根據(jù)這1000名消費(fèi)者的人均月餅購(gòu)買量估計(jì)該超市應(yīng)準(zhǔn)備多少噸月餅恰好能滿足市場(chǎng)需求頻率分布直方圖中同一組的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形中,,為邊的中點(diǎn),以為折痕把折起,使點(diǎn)到達(dá)點(diǎn)的位置,且使平面平面.
(1)證明:平面;
(2)求點(diǎn)到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù),),以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸的極坐標(biāo)系中,曲線上一點(diǎn)的極坐標(biāo)為,曲線的極坐標(biāo)方程為.
(1)求曲線的極坐標(biāo)方程;
(2)設(shè)點(diǎn)在上,點(diǎn)在上(異于極點(diǎn)),若四點(diǎn)依次在同一條直線上,且成等比數(shù)列,求的極坐標(biāo)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù),其中為正實(shí)數(shù).
(1)若不等式恒成立,求實(shí)數(shù)的取值范圍;
(2)當(dāng)時(shí),證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知四棱錐中,底面為菱形,,平面,、分別是、上的中點(diǎn),直線與平面所成角的正弦值為,點(diǎn)在上移動(dòng).
(Ⅰ)證明:無(wú)論點(diǎn)在上如何移動(dòng),都有平面平面;
(Ⅱ)求點(diǎn)恰為的中點(diǎn)時(shí),二面角的余弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com