16.在直角坐標(biāo)平面內(nèi),點(diǎn)A,B的坐標(biāo)分別為(-1,0),(1,0),則滿足tan∠PAB•tan∠PBA=m(m為非零常數(shù))的點(diǎn)P的軌跡方程是( 。
A.${x^2}-\frac{y^2}{m}=1(y≠0)$B.${x^2}-\frac{y^2}{m}=1$C.${x^2}+\frac{y^2}{m}=1(y≠0)$D.${x^2}+\frac{y^2}{m}=1$

分析 設(shè)P(x,y),則由題意,$\frac{y}{x+1}•(-\frac{y}{x-1})=m$(m≠0),化簡(jiǎn)可得結(jié)論.

解答 解:設(shè)P(x,y),則由題意,$\frac{y}{x+1}•(-\frac{y}{x-1})=m$(m≠0),
化簡(jiǎn)可得${x^2}+\frac{y^2}{m}=1(y≠0)$,
故選C.

點(diǎn)評(píng) 本題考查直接法求軌跡方程,考查斜率公式的運(yùn)用,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.如圖,已知四棱錐S-ABCD中,SA⊥平面ABCD,∠ABC=∠BCD=90°,且SA=AB=BC=2CD=2,E是邊SB的中點(diǎn).
(1)求證:CE∥平面SAD;
(2)求二面角D-EC-B的余弦值大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.tan$\frac{π}{4}$等于( 。
A.-1B.1C.-$\frac{\sqrt{2}}{2}$D.$\frac{\sqrt{2}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知函數(shù)$f(x)=4sinxcos({x+\frac{π}{3}})+4\sqrt{3}{sin^2}x-\sqrt{3}$.
(Ⅰ)求$f({\frac{π}{3}})$的值;
(Ⅱ)求f(x)圖象的對(duì)稱軸方程;
(Ⅲ)求f(x)在$[{-\frac{π}{4}\;,\;\frac{π}{3}}]$上的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.已知函數(shù)y=f(x)是奇函數(shù),且當(dāng)x≥0時(shí),f(x)=log2(x+1).若函數(shù)y=g(x)是y=f(x)的反函數(shù),則g(-3)=-7.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.下列各式錯(cuò)誤的是( 。
A.30.8>30.7B.log0.50.4>log0.50.6
C.0.75-0.1<0.750.1D.log2$\sqrt{3}$>log3$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知全集U={0,1,2,3,4},集合A={1,2,3},B={2,4},則(∁UA)∪B為(  )
A.{1,2,4}B.{2,3,4}C.{0,2,4}D.{0,2,3,4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.若f(x)=ax2+(a-2)x+a2是偶函數(shù),則${∫}_{-a}^{a}$(x2+x+$\sqrt{4-{x}^{2}}$)dx=$\frac{28}{3}$+2π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.如圖所示,程序框圖的輸出結(jié)果是3.

查看答案和解析>>

同步練習(xí)冊(cè)答案