2.如圖,在圓心角為120°的扇形OAB中,以O(shè)A為直徑作一個(gè)半圓,若在扇形OAB內(nèi)隨機(jī)取一點(diǎn),則此點(diǎn)取自陰影部分的概率是( 。
A.$\frac{5}{8π}$B.$\frac{5}{8}$C.$\frac{3}{8}$D.$\frac{3}{8π}$

分析 設(shè)圓心角為120°的扇形OAB的半徑為2,根據(jù)題意,易得圓心角為120°的扇形OAB的面積,OA為直徑作一個(gè)半圓的面積,進(jìn)而由幾何概型公式計(jì)算可得答案.

解答 解:設(shè)圓心角為120°的扇形OAB的半徑為2,根據(jù)題意,圓心角為120°的扇形OAB的面積為$\frac{1}{2}×\frac{2π}{3}×2×2$=$\frac{4π}{3}$,以O(shè)A為直徑作一個(gè)半圓的面積為$\frac{1}{2}π$
則正在扇形OAB內(nèi)隨機(jī)取一點(diǎn),此點(diǎn)取自陰影部分的概率為1-$\frac{\frac{1}{2}π}{\frac{4}{3}π}$=$\frac{5}{8}$,
故選:B.

點(diǎn)評 本題考查幾何概型的計(jì)算,涉及扇形、半圓的面積在求面積中的應(yīng)用,關(guān)鍵是正確計(jì)算出扇形、半圓的面積.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.設(shè)M=($\frac{1}{a}$-1)($\frac{1}$-1)($\frac{1}{c}$-1)滿足a+b+c=1(其中a>0,b>0,c>0),則M的取值范圍是( 。
A.[0,$\frac{1}{8}$)B.[$\frac{1}{8}$,1)C.[1,8)D.[8,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.用數(shù)學(xué)歸納法證明:(1+2+3+…+n)(1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{n}$)≥n2.(n∈N+

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知數(shù)列{an}滿足:a1=1,a2=3,an+2=(2+cosnπ)(an+1)-3(n∈N*).
(I)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)令bn=$\left\{\begin{array}{l}\frac{{{{log}_3}{a_n}}}{{{n^2}({n+2})}},n=2k({k∈{N^*}})\\{a_n},n=2k-1({k∈{N^*}})\end{array}$,Tn為數(shù)列{bn}的前n項(xiàng)和,求T2n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知橢圓C1:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)與雙曲線C2:x2-$\frac{{y}^{2}}{4}$=1有公共的焦點(diǎn),C2的一條漸近線與以C1的長軸為直徑的圓相交于A、B兩點(diǎn),若C1恰好將線段AB三等分,則橢圓C1的方程是( 。
A.$\frac{2{x}^{2}}{11}$+2y2=1B.$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1C.$\frac{{x}^{2}}{10}$+$\frac{{y}^{2}}{5}$=1D.$\frac{{x}^{2}}{2}$+y2=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.設(shè)f(x)=$\left\{\begin{array}{l}x-2,x≤3\\ 2+{log_{\frac{1}{2}}}x,x>3\end{array}$,則f[f(4)]=(  )
A.4B.1C.-1D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知:(x+1)n=a0+a1(x-1)+a2(x-1)2+a3(x-1)3+…+an(x-1)n(n≥2,n∈N*
(1)當(dāng)n=5時(shí),求a0的值;
(2)求$\frac{1}{n}$a1+$\frac{2}{n}$a2+…+$\frac{n-1}{n}$an-1+$\frac{n}{n}$an(n≥2,n∈N)
(3)設(shè)bn=$\frac{{a}_{2}}{{2}^{n-3}}$,Tn=b2+b3+b4+…bn,試用數(shù)學(xué)歸納法證明:當(dāng)n≥2時(shí),Tn=$\frac{n(n+1)(n-1)}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知F1、F2分別為橢圓C1:$\frac{y^2}{a^2}$+$\frac{x^2}{b^2}$=1(a>b>0)的上、下焦點(diǎn),其中F1也是拋物線C2:x2=4y的焦點(diǎn),點(diǎn)M是C1與C2在第二象限的交點(diǎn),且|MF1|=$\frac{5}{3}$.
(Ⅰ)求橢圓的方程;
(Ⅱ)已知點(diǎn)P(1,3)和圓O:x2+y2=b2,過點(diǎn)P的動直線l與圓O相交于不同的兩點(diǎn)A,B,在線段AB取一點(diǎn)Q,滿足:$\overrightarrow{AP}$=-λ$\overrightarrow{PB}$,$\overrightarrow{AQ}$=λ$\overrightarrow{QB}$(λ≠0且λ≠±1),探究是否存在一條直線使得點(diǎn)Q總在該直線上,若存在求出該直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.將一個(gè)棱長為a的正方體嵌入到四個(gè)半徑為1且兩兩相切的實(shí)心小球所形成的球間空隙內(nèi),使得正方體能夠任意自由地轉(zhuǎn)動,則a的最大值為$\frac{{3\sqrt{2}-2\sqrt{3}}}{3}$.

查看答案和解析>>

同步練習(xí)冊答案