15.如圖,網(wǎng)格紙上小正方形的邊長為1,粗線畫出的是某幾何體的三視圖,則此幾何體的體積為( 。
A.100B.92C.84D.76

分析 由三視圖知該幾何體為截去一角的長方體,求出幾何元素的長度,由柱體、椎體的體積公式求解即可.

解答 解:由幾何體的三視圖,可知該幾何體為截去一角的長方體,
其直觀圖如圖所示,
所以其體積$V=6×6×3-\frac{1}{3}×\frac{1}{2}×4×4×3=100$,
故選:A.

點(diǎn)評 本題考查三視圖求幾何體的體積,由三視圖正確復(fù)原幾何體是解題的關(guān)鍵,考查空間想象能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知a,b,c為△ABC的三個(gè)角A,B,C所對的邊,若3bcosC=c(1-3cosB),sinC:sinA=(  )
A.2:3B.4:3C.3:1D.3:2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.若向量$\overrightarrow{a}$=(3,4),$\overrightarrow$∥$\overrightarrow{a}$,且|$\overrightarrow$|=10,求向量$\overrightarrow$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知正四棱錐的頂點(diǎn)都在同一球面上,且該棱錐的高為 4,底面邊長為2$\sqrt{2}$,則該球的表面積為25π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=ln($\frac{x-1}{3}$)+$\frac{a}{x+2}$(a∈R).
(1)若函數(shù)f(x)在定義域上是單調(diào)遞增函數(shù),求實(shí)數(shù)a的取值范圍;
(2)若函數(shù)在定義域上有兩個(gè)極值點(diǎn)x1,x2,試問:是否存在實(shí)數(shù)a,使得f(x1)+f(x2)=3?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.2015年7月9日21時(shí)15分,臺風(fēng)“蓮花”在我國廣東省陸豐市甲東鎮(zhèn)沿海登陸,造成直接經(jīng)濟(jì)損失12.99億元.適逢暑假,小明調(diào)查了某小區(qū)的50戶居民由于臺風(fēng)造成的經(jīng)濟(jì)損失,將收集的數(shù)據(jù)分成[0,2000],(2000,4000],(4000,6000],(6000,8000],(8000,10000]五組,并作出如圖頻率分布直方圖.
(Ⅰ)小明向班級同學(xué)發(fā)出倡議,為該小區(qū)居民捐款.現(xiàn)從損失超過6000元的居民中隨機(jī)抽出2戶進(jìn)行捐款援助,求這兩戶在同一分組的概率;
(Ⅱ)臺風(fēng)后區(qū)委會號召小區(qū)居民為臺風(fēng)重災(zāi)區(qū)捐款,小明調(diào)查的50戶居民捐款情況如表,在表格空白處填寫正確數(shù)字,并說明是否有95%以上的把握認(rèn)為捐款數(shù)額多于或少于500元和自身經(jīng)濟(jì)損失是否到4000元有關(guān)?
經(jīng)濟(jì)損失不超過
4000元
經(jīng)濟(jì)損失超過
4000元
合計(jì)
捐款超過
500元
30
捐款不超
過500元
6
合計(jì)
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
附:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.“開門大吉”是某電視臺推出的游戲節(jié)目.選手面對1~8號8扇大門,依次按響門上的門鈴,門鈴會播放一段音樂(將一首經(jīng)典流行歌曲以單音色旋律的方式演繹),選手需正確答出這首歌的名字,方可獲得該扇門對應(yīng)的家庭夢想基金.在一次場外調(diào)查中,發(fā)現(xiàn)參賽選手大多在以下兩個(gè)年齡段:21~30,31~40(單位:歲),統(tǒng)計(jì)這兩個(gè)年齡段選手答對歌曲名稱與否的人數(shù)如圖所示.
(1)寫出2×2列聯(lián)表,并判斷是否有90%的把握認(rèn)為答對歌曲名稱與否和年齡有關(guān),說明你的理由.(下面的臨界值表供參考)
P(K2≥k0 0.1 0.050.01  0.005
 k0 2.7063.841  6.6357.879 
(2)在統(tǒng)計(jì)過的參考選手中按年齡段分層選取9名選手,并抽取3名幸運(yùn)選手,求3名幸運(yùn)選手中在21~30歲年齡段的人數(shù)的分布列和數(shù)學(xué)期望.
(參考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知數(shù)列{an}滿足a1=4,an=$\frac{{4{a_{n-1}}-4}}{{{a_{n-1}}}}$,記bn=$\frac{1}{{{a_n}-2}}$.
(1)求證:數(shù)列{bn}是等差數(shù)列;
(2)求數(shù)列{bn}前n項(xiàng)和Sn的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.若等比數(shù)列{an}的前n項(xiàng)和Sn=2016n+t(t為常數(shù)),則a1的值為( 。
A.2013B.2014C.2015D.2016

查看答案和解析>>

同步練習(xí)冊答案