16.已知一組實數(shù)按順序排列為:$\frac{1}{2},\frac{2}{5},\frac{3}{10},\frac{4}{17},\frac{5}{26}…$,依此規(guī)律可歸納出第7個數(shù)為$\frac{7}{50}$.

分析 分子是從1開始連續(xù)的自然數(shù),分母是從1開始連續(xù)自然數(shù)的平方加1,由此規(guī)律得出第n個數(shù),即可求得第7個數(shù).

解答 解:觀察$\frac{1}{1+1}$,$\frac{2}{5}$=$\frac{2}{{2}^{2}+1}$,$\frac{3}{10}$=$\frac{3}{{3}^{2}+1}$…第n個數(shù)為$\frac{n}{{n}^{2}+1}$,
故第七個數(shù)為$\frac{7}{{7}^{2}+1}$=$\frac{7}{50}$,
故答案為:$\frac{7}{50}$.

點評 本題考查的是數(shù)字的變化規(guī)律問題,根據(jù)給出的一組數(shù)據(jù),正確找出其排列規(guī)律是解題的關(guān)鍵,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知f(x)=$\left\{\begin{array}{l}ln(\sqrt{{x^2}+1}-x),x≥0\\ ln(\sqrt{{x^2}+1}+x),x<0\end{array}$,則不等式f(2x-1)>f(3)的解集為( 。
A.(2,+∞)B.(-∞,-2)∪(2,+∞)C.(-1,2)D.(-∞,-1)∪(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知集合A={x|x2+4x-12=0},B={x|x2+kx-k=0},若A∩B=B,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.f(x)=2sin$\frac{x}{4}$cos$\frac{x}{4}$$+\sqrt{3}$cos$\frac{x}{2}$(x∈R);
(1)求該函數(shù)最大值以及取得最大值時的x的取值;
(2)直線l傾斜角為θ,且f(θ)=2,l與坐標(biāo)軸圍成的三角形的面積為$\sqrt{3}$,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.圓(x-2)2+y2=4與圓(x+2)2+(y+3)2=9的位置關(guān)系為( 。
A.內(nèi)切B.相交C.外切D.相離

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.將八進(jìn)制數(shù)1001(8)轉(zhuǎn)化為六進(jìn)制數(shù)為( 。
A.2121(6)B.2212(6)C.2213(6)D.3122(6)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知α、β都是銳角,且sinα=$\frac{12}{13}$,cos(α+β)=-$\frac{4}{5}$,則cos2β=$-\frac{3713}{4225}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.某校從參加高三模擬考試的學(xué)生中隨機(jī)抽取60名學(xué)生,按其數(shù)學(xué)成績(均為整數(shù))分成六組[90,100),[100,110),…,[140,150]后得到如下部分頻率分布直方圖,觀察圖中的信息,回答下列問題:
(Ⅰ)補(bǔ)全頻率分布直方圖;
(Ⅱ)估計本次考試的數(shù)學(xué)平均成績(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);
(Ⅲ)用分層抽樣的方法在分?jǐn)?shù)段為[110,130)的學(xué)生成績中抽取一個容量為6的樣本,再從這6個樣本中任取2人成績,求至多有1人成績在分?jǐn)?shù)段[120,130)內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.在公差不為零的等差數(shù)列{an}和等比數(shù)列{bn}中,已知a1=b1=1,a2=b2,a6=b3
(1)求數(shù)列{an}和{bn}的通項公式;
(2)設(shè)cn=anbn,求數(shù)列{cn}的前n項和Sn

查看答案和解析>>

同步練習(xí)冊答案