5.已知點(diǎn)M的球坐標(biāo)為(4,$\frac{π}{4}$,$\frac{3π}{4}$),則它的直角坐標(biāo)為(-2,2,2$\sqrt{2}$).

分析 根據(jù)球坐標(biāo)與直角坐標(biāo)的對(duì)于關(guān)系計(jì)算得出.

解答 解:4•sin$\frac{π}{4}$•cos$\frac{3π}{4}$=-2,
4•sin$\frac{3π}{4}$•sin$\frac{π}{4}$=2,
4•cos$\frac{π}{4}$=2$\sqrt{2}$,
∴M的直角坐標(biāo)為(-2,2,2$\sqrt{2}$),
故答案為:(-2,2,2$\sqrt{2}$).

點(diǎn)評(píng) 本題考查了球坐標(biāo)與直角坐標(biāo)的對(duì)應(yīng)關(guān)系,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.某媒體對(duì)“男女同齡退休”這一公眾關(guān)注的問題進(jìn)行了民意調(diào)查,表是在某單位得到的數(shù)據(jù)(人數(shù)).
贊成反對(duì)合計(jì)
5611
11314
合計(jì)16925
(I )能否有90%以上的把握認(rèn)為對(duì)這一問題的看法與性別有關(guān)?
(II)從反對(duì)“男女同齡退休”的甲、乙等6名男士中選出2人進(jìn)行陳述,求甲、乙至少有一人被選出的概率.
附:
P(K2≥k)0.250.150.10
k1.3232.0722.706
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知等差數(shù)列{an},{bn}的前n項(xiàng)和分別為Sn和Tn,若$\frac{{S}_{n}}{{T}_{n}}$=$\frac{2n}{3n+1}$,則$\frac{{a}_{5}}{_{5}}$=( 。
A.$\frac{16}{25}$B.$\frac{9}{14}$C.$\frac{15}{23}$D.$\frac{2}{7}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.在△ABC中,已知a2+b2+$\sqrt{2}ab={c^2}$,則角C=135°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.二次曲線$\left\{{\begin{array}{l}{x=3cosθ}\\{y=5sinθ}\end{array}}\right.$(θ是參數(shù))的離心率是( 。
A.$\frac{3}{5}$B.$\frac{3}{4}$C.$\frac{{\sqrt{34}}}{3}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知函數(shù)y=sin(2x+φ)的圖象關(guān)于直線x=-$\frac{π}{8}$對(duì)稱,則φ的可能取值是(  )
A.$\frac{3π}{4}$B.-$\frac{3π}{4}$C.$\frac{π}{4}$D.$\frac{π}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.若$\vec a=({4,-2}),\vec b=({k,-1})$,且$\vec a⊥\vec b$,則k=-$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知a∈R,函數(shù)$f(x)={2^{\frac{1}{x}+a}}$.
(1)當(dāng)a=1時(shí),解不等式f(x)>4;
(2)若f(x)>2-x在x∈[2,3]恒成立,求a的取值范圍;
(3)若關(guān)于x的方程f(x)-2(a-4)x+2a-5=0在區(qū)間(-2,0)內(nèi)的解恰有一個(gè),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.平面內(nèi)給定三個(gè)向量$\overrightarrow{a}$=(1,3),$\overrightarrow$=(-1,2),$\overrightarrow{c}$=(2,1).
(1)求滿足$\overrightarrow{a}$=m$\overrightarrow$+n$\overrightarrow{c}$的實(shí)數(shù)m,n;
(2)若($\overrightarrow{a}$+k$\overrightarrow{c}$)∥(2$\overrightarrow$-$\overrightarrow{a}$),求實(shí)數(shù)k.

查看答案和解析>>

同步練習(xí)冊(cè)答案