函數(shù)y=
sinx
+
-cosx
的定義域是(  )
A、[kπ+
π
2
,(2k+1)π](k∈Z)
B、[kπ+
π
2
,(k+1)π](k∈Z)
C、[2kπ+
π
2
,(2k+1)π](k∈Z)
D、[2kπ,(2k+1)π](k∈Z)
考點(diǎn):函數(shù)的定義域及其求法
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)偶次根號(hào)下被開方數(shù)大于等于零列出不等式組,利用三角函數(shù)值的符號(hào)求出x的范圍,再表示出區(qū)間形式.
解答: 解:要使函數(shù)有意義,則
sinx≥0
-cosx≥0
,即
sinx≥0
cosx≤0
,
所以2kπ+
π
2
≤x≤(2k+1)π,(k∈Z)
即函數(shù)的定義域是[2kπ+
π
2
,(2k+1)π](k∈Z),
故選:C.
點(diǎn)評(píng):本題考查函數(shù)的定義域的求法,以及三角函數(shù)值的符號(hào),屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四棱錐P-ABCD中,AD=CD=
1
2
AB,AB∥DC,AD⊥CD,PC⊥平面ABCD.
(1)求證:BC⊥平面PAC;
(2)若M為線段PA的中點(diǎn),且過C,D,M三點(diǎn)的平面與PB交于點(diǎn)N,求PN:PB的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足a1=0,an+1=
1+an
3-an
,寫出若干項(xiàng),并歸納通項(xiàng)公式an=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知i是虛數(shù)單位,若復(fù)數(shù)z滿足(z-i)(3-i)=10,則復(fù)數(shù)z所對(duì)應(yīng)的點(diǎn)位于復(fù)平面的( 。
A、第一象限B、第二象限
C、第三象限D、第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=x3-3ax+3a在區(qū)間(0,2)內(nèi)有極小值,則a的取值范圍是( 。
A、a>0B、a>2
C、0<a<2D、0<a<4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知x,y,z都是正數(shù)且xyz=1,求證:(1+x)(1+y)(1+z)≥8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,從氣球A上測得正前方的河流的兩岸B,C的俯角分別為75°,30°,此時(shí)氣球的高是60m,則河流的寬度BC等于( 。
A、30(
3
+1)
m
B、120(
3
-1)
m
C、180(
2
-1)
m
D、240(
3
-1)
m

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線n的極坐標(biāo)是pcos(θ+
π
4
)=4
2
,圓A的參數(shù)方程是
x=1+
2
cosθ
y=-1+
2
sinθ
(θ是參數(shù))
(1)將直線n的極坐標(biāo)方程化為普通方程;
(2)求圓A上的點(diǎn)到直線n上點(diǎn)距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求下列函數(shù)的最小正周期.
(1)y=sin(
π
2
x+3);
(2)y=|cosx|

查看答案和解析>>

同步練習(xí)冊(cè)答案