精英家教網 > 高中數學 > 題目詳情

【題目】據國家統(tǒng)計局發(fā)布的數據,201911月全國(居民消費價格指數),同比上漲,上漲的主要因素是豬肉價格的上漲,豬肉加上其他畜肉影響上漲3.27個百分點.下圖是201911一籃子商品權重,根據該圖,下列四個結論正確的有______

一籃子商品中權重最大的是居住

一籃子商品中吃穿住所占權重超過

③豬肉在一籃子商品中權重為

④豬肉與其他禽肉在一籃子商品中權重約為

【答案】①②③

【解析】

結合兩個圖,對四個結論逐個分析可得出答案.

對于①,一籃子商品中居住占,所占權重最大,故①正確;

對于②,一籃子商品中吃穿住所占,權重超過,故②正確;

對于③,由第二個圖可知,豬肉在一籃子商品中權重為,故③正確;

對于④,由第二個圖可知,豬肉與其他禽肉在一籃子商品中權重約為,故④錯誤.

故答案為:①②③.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】如圖,分別過橢圓左、右焦點的動直線相交于與橢圓分別交于不同四點,直線的斜率滿足.已知當軸重合時,,.

Ⅰ)求橢圓的方程;

Ⅱ)是否存在定點,使得為定值?若存在,求出點坐標并求出此定值;若不存在,說明理由.

【答案】(Ⅰ);,.

【解析】試題分析:(1)當軸重合時,垂直于軸,得,,從而得橢圓的方程;(2)由題目分析如果存兩定點,則點的軌跡是橢圓或者雙曲線 ,所以把坐標化,可得點的軌跡是橢圓,從而求得定點和點.

試題解析:軸重合時,, ,所以垂直于軸,得,,, ,橢圓的方程為.

焦點坐標分別為, 當直線斜率不存在時,點坐標為;

當直線斜率存在時,設斜率分別為, , 得:

, 所以:,, 則:

. 同理:, 因為

, 所以, , 由題意知, 所以

, 設,則,即,由當直線斜率不存在時,點坐標為也滿足此方程,所以點在橢圓.存在點和點,使得為定值,定值為.

考點:圓錐曲線的定義,性質,方程.

【方法點晴】本題是對圓錐曲線的綜合應用進行考查,第一問通過兩個特殊位置,得到基本量,得,,從而得橢圓的方程,第二問由題目分析如果存兩定點,則點的軌跡是橢圓或者雙曲線 ,本題的關鍵是從這個角度出發(fā),把坐標化,求得點的軌跡方程是橢圓,從而求得存在兩定點和點.

型】解答
束】
21

【題目】已知,,.

(Ⅰ)若,求的極值;

(Ⅱ)若函數的兩個零點為,記,證明:

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某漁業(yè)公司今年初用98萬元購進一艘遠洋漁船,每年的捕撈可有50萬元的總收入,已知使用年()所需(包括維修費)的各種費用總計為萬元.

1)該船撈捕第幾年開始贏利(總收入超過總支出,今年為第一年)?

2)該船若干年后有兩種處理方案:

①當贏利總額達到最大值時,以8萬元價格賣出;

②當年平均贏利達到最大值時,以26萬元賣出,問哪一種方案較為合算?請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】挑選空間飛行員可以說是“萬里挑一”,要想通過需要五關:目測、初檢、復檢、文考(文化考試)、政審.若某校甲、乙、丙三位同學都順利通過了前兩關,根據分析甲、乙、丙三位同學通過復檢關的概率分別是0.5、0.60.75,能通過文考關的概率分別是0.60.5、0.4,由于他們平時表現較好,都能通過政審關,若后三關之間通過與否沒有影響.

1)求甲被錄取成為空軍飛行員的概率;

2)求甲、乙、丙三位同學中恰好有一個人通過復檢的概率;

3)設只要通過后三關就可以被錄取,求錄取人數的分布列.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】對兩個變量yx進行回歸分析,則下列說法中不正確的是(

A.由樣本數據得到的回歸方程必過樣本點的中心.

B.殘差平方和越小的模型,擬合的效果越好.

C.用相關指數來刻畫回歸效果,的值越小,說明模型的擬合效果越好.

D.回歸分析是對具有相關關系的兩個變量進行統(tǒng)計分析的一種常用方法.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知四棱錐P﹣ABCD中,四邊形ABCD是菱形,∠BAD=60°,又PD⊥平面ABCD,點E是棱AD的中點,F在棱PC上,且AD=PD=4.

(1)證明:平面BEF⊥平面PAD;

(2)若PA∥平面BEF,求四棱錐F﹣BCDE的體積.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,三棱錐,,底面正三角形.

證明;

)若平面,求二面余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】隨著城市地鐵建設的持續(xù)推進,市民的出行也越來越便利.根據大數據統(tǒng)計,某條地鐵線路運行時,發(fā)車時間間隔t(單位:分鐘)滿足:,平均每趟地鐵的載客人數(單位:人)與發(fā)車時間間隔近似地滿足下列函數關系:,其中

1)若平均每趟地鐵的載客人數不超過1000人,試求發(fā)車時間間隔t的值;

2)若平均每趟地鐵每分鐘的凈收益為(單位:元),問當發(fā)車時間間隔t為多少分鐘時,平均每趟地鐵每分鐘的凈收益最大? 并求出最大凈收益.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在多面體ABCDEF中,四邊形ABCD是矩形,四邊形ABEF為等腰梯形,且,平面ABCD⊥平面ABEF

(1)求證:BE⊥DF;

(2)求三棱錐C﹣AEF的體積V.

查看答案和解析>>

同步練習冊答案