分析 (1)由已知令t=x+1,則f(t)=lg(t+1)-lg(1-t),然后還原;
(2)由(1)得到不等式,借助于對數(shù)函數(shù)的大小,得到分式不等式解之.
解答 解:(1)由已知令t=x+1,則f(t)=lg(t+1)-lg(1-t),
即f(x)=lg(x+1)-lg(1-x);
由$\left\{\begin{array}{l}{x+1>0}\\{1-x>0}\end{array}\right.$得到-1<x<1,所以函數(shù)定義域?yàn)椋?1,1);
(2)f(x)=lg(x+1)-lg(1-x)=lg$\frac{1+x}{1-x}$<1,即$\left\{\begin{array}{l}{\frac{1+x}{1-x}<10}\\{-1<x<1}\end{array}\right.$,解得-1<x<$\frac{9}{11}$.
點(diǎn)評 本題考查了換元法求函數(shù)解析式以及解對數(shù)不等式;比較基礎(chǔ).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{7}{3}$ | B. | $\frac{17}{50}$ | C. | $\frac{11}{3}$ | D. | $\frac{5}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com