已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<π)在一個(gè)周期內(nèi)的圖象如圖所示.
(1)求函數(shù)f(x)的解析式;
(2)求函數(shù)f(x)在[-
π
6
,
π
4
]的最大值和最小值.
考點(diǎn):由y=Asin(ωx+φ)的部分圖象確定其解析式,三角函數(shù)的最值
專題:三角函數(shù)的求值
分析:(1)求出函數(shù)的振幅,周期,得到角頻率,利用函數(shù)經(jīng)過的特殊點(diǎn)求出初相,即可求出函數(shù)的解析式.
(2)利用x的范圍求出相位的范圍,通過三角函數(shù)的值域求解函數(shù)的值域即可.
解答: 解:(1)由圖可知A=2,…(1分)
T
4
=
11π
12
-
3
=
π
4
,∴T=π.
ω=
π
=2
…(3分)
∴f(x)=2sin(2x+φ).
又因?yàn)楹瘮?shù)圖象過點(diǎn)(
11π
12
,-2)
,
2sin(
11π
6
+φ)=-2
,
11π
6
+φ=
2
+2kπ,k∈Z
,
φ=2kπ-
π
3
,k∈Z
…(5分)
又∵|π|<π∴φ=-
π
3
f(x)=2sin(2x-
π
3
)
.…(7分)
(2)令2x-
π
3
=t
x∈[-
π
6
π
4
]
t∈[-
3
,
π
6
]
,…(9分)
sint∈[-1,
1
2
]
,…(12分)
∴f(x)的值域?yàn)閇-2,1].…(14分)
點(diǎn)評(píng):本題考查函數(shù)的解析式的求法,三角函數(shù)的值域的求法,考查計(jì)算能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an},其前n項(xiàng)和為Sn,滿足2Sn=3an-3(n∈N*)數(shù)列{
cn
an
}是等差數(shù)列,其第三項(xiàng)和第九項(xiàng)分別是a1和-a2
(1)求數(shù)列{an}的通項(xiàng)公式an;
(2)求數(shù)列{cn}的通項(xiàng)公式及前n項(xiàng)和Tn;
(3)如果對(duì)任意的n∈N*,不等式-t2+at+80≥cn恒成立,求使關(guān)于t的不等式有解的充要條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在[-1,1]上的函數(shù)f(x)是減函數(shù),且f(1-a)>f(a2-1),求實(shí)數(shù)a的取值范圍
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列命題:
①△ABC的三邊分別為a,b,c則該三角形是等邊三角形的充要條件為a2+b2+c2=ab+ac+bc;
②在△ABC中,“A>B”是“sinA>sinB”的充要條件;
③若命題P:?x∈R,tanx=1;命題q:?x∈R,x2-x+1>0,則命題“p且-q“是假命題;
④已知a1,b1,c1,a2,b2,c2都是不等于零的實(shí)數(shù),關(guān)于x的不等式a1x2+b1x+c1>0和a2x2+b2x+c2>0的解集分別為P,Q,則
a1
a2
=
b1
b2
=
c1
c2
是P=Q的充分必要條件;
⑤“函數(shù)f(x)=tan(x+ϕ)為奇函數(shù)”的充要條件是“ϕ=kπ(k∈Z)”.
其中正確的命題是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知約束條件
x-2y+1≤0
ax-y≥0
x≤1
表示的平面區(qū)域?yàn)镈,若區(qū)域D內(nèi)至少有一個(gè)點(diǎn)在函數(shù)y=ex的圖象上,那么實(shí)數(shù)a的取值范圍為( 。
A、[e,4)
B、[e,+∞)
C、[1,3)
D、[2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知變量x,y滿足約束條件
x+y≤1
x-y≤1
x≥0
,則
y
x+2
的最大值為
 
,最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=x2+mx+n,對(duì)任意實(shí)數(shù)x都有f(2-x)=f(2+x)成立,試比較f(-1),f(2),f(4)的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

化簡:(
32
×
3
6+(
2
2
 
4
3
-4(
16
49
 -
1
2
-
42
×80.25-(-2012)0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果點(diǎn)P(sinθ,tanθ)位于第二象限,那么角θ所在的象限是( 。
A、第一象限B、第二象限
C、第三象限D、第四象限

查看答案和解析>>

同步練習(xí)冊(cè)答案