1.若圓錐的側(cè)面展開圖是半徑為1cm、圓心角為120°的扇形,則這個圓錐的軸截面面積等于$\frac{2\sqrt{2}}{9}$.

分析 根據(jù)圓錐側(cè)面展開圖與圓錐的對應(yīng)關(guān)系列方程解出圓錐的底面半徑和母線長,計算出圓錐的高.

解答 解:設(shè)圓錐的底面半徑為r,母線長為l,則$\left\{\begin{array}{l}{l=1}\\{2πr=\frac{2π}{3}×1}\end{array}\right.$,
解得l=1,r=$\frac{1}{3}$.
∴圓錐的高h=$\sqrt{{l}^{2}-{r}^{2}}$=$\frac{2\sqrt{2}}{3}$.
∴圓錐的軸截面面積S=$\frac{1}{2}×2r×h$=$\frac{2\sqrt{2}}{9}$.
故答案為:$\frac{2\sqrt{2}}{9}$.

點評 本題考查了圓錐的結(jié)構(gòu)特征,弧長公式,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.在任意兩個正整數(shù)m,n之間定義一種運算關(guān)系“*”:(m+1)*n=m*n+2,m*(n+1)=m*n一1,且規(guī)定1*1=1.
(1)求2*3的值;
(2)求2016*2016的值;
(3)試求m*n關(guān)于m,n的代數(shù)表達式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.若$\frac{cosx-sinx}{cosx+sinx}$=2,則sin2x-sin2x=$\frac{7}{10}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知正數(shù)x,y,z滿足5x+4y+3z=10,則${9^{x^2}}+{9^{{y^2}+{z^2}}}$的最小值為( 。
A.27B.18C.36D.54

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.函數(shù)$y=x\sqrt{1-{x^2}}({0<x<1})$的最大值為$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.如圖,正方體ABCD-A1B1C1D1的棱長為1,E為A1B1的中點,則下列五個命題:
①點E到平面ABC1D1的距離為$\frac{1}{2}$;
②直線BC與平面ABC1D1所成角為45°;
③空間四邊形ABCD1在正方體六個面內(nèi)的射影圍成的圖形中,面積最小的值為$\frac{1}{2}$;
④BE與CD1所成角的正弦值為$\frac{{\sqrt{10}}}{10}$;
⑤二面角A-BD1-C的大小為$\frac{5π}{6}$.
其中真命題是②③④.(寫出所有真命題的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.如圖,在正方體ABCD-A1B1C1D1中,E,F(xiàn)分別是C1D1,CC1的中點,則異面直線AE與BF所成角的余弦值為( 。
A.-$\frac{{5\sqrt{6}}}{18}$B.-$\frac{{\sqrt{5}}}{5}$C.$\frac{{\sqrt{6}}}{5}$D.$\frac{{2\sqrt{5}}}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.如圖,△ABC是邊長為2的等邊三角形,△ABD是等腰直角三角形,AD⊥BD,平面ABC⊥平面ABD,且EC⊥平面ABC,EC=1.
(Ⅰ)證明:DE∥平面ABC;
(Ⅱ)證明:平面ABD⊥平面BDE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.設(shè)向量$\overrightarrow a$=(1,x),$\overrightarrow b$=(x,4),則“x=$\int_{1}^{e}{\frac{2}{t}}$dt”(e=2.718…是自然對數(shù)的底數(shù))是“$\overrightarrow a$∥$\overrightarrow b$”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

同步練習(xí)冊答案