甲,乙,丙三位學(xué)生獨立地解同一道題,甲做對的概率為
1
2
,乙,丙做對的概率分別為m,n(m>n),且三位學(xué)生是否做對相互獨立.記ξ為這三位學(xué)生中做對該題的人數(shù),其分布列為:
ξ 0 1 2 3
P
1
4
a b
1
24
(1)求至少有一位學(xué)生做對該題的概率;
(2)求m,n的值;
(3)求ξ的數(shù)學(xué)期望.
設(shè)“甲做對”為事件A,“乙做對”為事件B,“丙做對”為事件C,
由題意知,P(A)=
1
2
,P(B)=m,P(C)=n

(1)由于事件“至少有一位學(xué)生做對該題”與事件“ξ=0”是對立的,
所以至少有一位學(xué)生做對該題的概率是1-P(ξ=0)=1-
1
4
=
3
4

(2)由題意知P(ξ=0)=P(
.
A
.
B
.
C
)=
1
2
(1-m)(1-n)=
1
4

           P(ξ=3)=P(ABC)=
1
2
mn=
1
24
,
整理得  mn=
1
12
,m+n=
7
12

由m>n,解得m=
1
3
,n=
1
4

(3)由題意知a=P(ξ=1)=P(A
.
B
.
C
)+P(
.
A
B
.
C
)+P(
.
A
.
B
C)
=
1
2
(1-m)(1-n)+
1
2
m(1-n)+
1
2
(1-m)n=
11
24
,
b=P(ξ=2)=1-P(ξ=0)-P(ξ=1)-P(ξ=3)=
1
4

∴ξ的數(shù)學(xué)期望為Eξ=
1
4
+1×
11
24
+2×
1
4
+3×
1
24
=
13
12
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•廣州一模)甲,乙,丙三位學(xué)生獨立地解同一道題,甲做對的概率為
1
2
,乙,丙做對的概率分別為m,n(m>n),且三位學(xué)生是否做對相互獨立.記ξ為這三位學(xué)生中做對該題的人數(shù),其分布列為:
ξ 0 1 2 3
P
1
4
a b
1
24
(1)求至少有一位學(xué)生做對該題的概率;
(2)求m,n的值;
(3)求ξ的數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•紹興一模)甲、乙、丙三位學(xué)生在學(xué)校開設(shè)的三門選修課中自主選課,其中甲和乙各選修其中的兩門,丙選修其中的一門,且每門選修課這三位學(xué)生中至少有一位選修,則不同的選法共有
21
21
種.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆四川省高三開學(xué)檢測理科數(shù)學(xué)試卷(解析版) 題型:解答題

甲,乙,丙三位學(xué)生獨立地解同一道題,甲做對的概率為,乙,丙做對的概率分別為, (),且三位學(xué)生是否做對相互獨立.記為這三位學(xué)生中做對該題的人數(shù),其分布列為:

0

1

2

3

(Ⅰ)求至少有一位學(xué)生做對該題的概率;

(Ⅱ)求,的值;

(Ⅲ)求的數(shù)學(xué)期望.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年廣東省廣州市高三3月畢業(yè)班綜合測試(一)理科數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分12分)

甲,乙,丙三位學(xué)生獨立地解同一道題,甲做對的概率為,乙,丙做對的概率分別為, (),且三位學(xué)生是否做對相互獨立.記為這三位學(xué)生中做對該題的人數(shù),其分布列為:

0

1

2

3

(1) 求至少有一位學(xué)生做對該題的概率;

(2) 求的值;

(3) 求的數(shù)學(xué)期望.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年四川省高二下學(xué)期5月月考數(shù)學(xué)試題 題型:選擇題

甲、乙、丙三位學(xué)生用計算機聯(lián)網(wǎng)學(xué)習(xí)數(shù)學(xué),每天上課后獨立完成6道自我檢測題,甲答及格的概率為,乙答及格的概率為,丙答及格的概率為,三人各答一次,則三人中只有一人答及格的概率為(   )

A.    B.    C.    D.以上答案都不對

 

查看答案和解析>>

同步練習(xí)冊答案