分析 把已知的數(shù)列遞推式變形,累加后求得an+1-an的通項公式,進一步得到數(shù)列{bn}的通項公式,然后利用裂項相消法求得數(shù)列{bn}的前10項和.
解答 解:由an+2-2an+1+an=n-2,得(an+2-an+1)-(an+1-an)=n-2,
設(shè)cn=an+1-an,于是cn+1-cn=n-2,
又c1=a2-a1=p+1-p=1,
∴cn=(cn-cn-1)+(cn-1-cn-2)+…+(c2-c1)+c1
=(n-3)+(n-4)+(n-5)+…+(-1)+1=$\frac{(n-4)(n-1)}{2}$+1=$\frac{(n-2)(n-3)}{2}$,
∴cn+4=an+5-an+4=$\frac{(n+1)(n+2)}{2}$,
則bn=$\frac{1}{{a}_{n+5}-{a}_{n+4}}$=$\frac{2}{(n+1)(n+2)}=2(\frac{1}{n+1}-\frac{1}{n+2})$,
∴數(shù)列{bn}的前10項和為$2(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+…+\frac{1}{11}-\frac{1}{12})$=$2(\frac{1}{2}-\frac{1}{12})=\frac{5}{6}$.
故答案為:$\frac{5}{6}$.
點評 本題考查了累加法求數(shù)列的通項公式,考查了等差數(shù)列的前n項和,考查了裂項相消法求數(shù)列的和,是中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 點A處 | B. | 線段AD的中點處 | C. | 線段AB的中點處 | D. | 點D處 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com