【題目】近年來,新能源汽車技術(shù)不斷推陳出新,新產(chǎn)品不斷涌現(xiàn),在汽車市場(chǎng)上影響力不斷增大.動(dòng)力蓄電池技術(shù)作為新能源汽車的核心技術(shù),它的不斷成熟也是推動(dòng)新能源汽車發(fā)展的主要?jiǎng)恿?/span>.假定現(xiàn)在市售的某款新能源汽車上,車載動(dòng)力蓄電池充放電循環(huán)次數(shù)達(dá)到2000次的概率為85%,充放電循環(huán)次數(shù)達(dá)到2500次的概率為35%.若某用戶的自用新能源汽車已經(jīng)經(jīng)過了2000次充電,那么他的車能夠充電2500次的概率為______.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,直線與橢圓的兩交點(diǎn)間距離為.
(1)求橢圓的方程;
(2)如圖,設(shè)是橢圓上的一動(dòng)點(diǎn),由原點(diǎn)向圓引兩條切線,分別交橢圓于點(diǎn),若直線的斜率均存在,并分別記為,求證:為定值.
(3)在(2)的條件下,試問是否為定值?若是,求出該值;若不是,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】[2019·開封一模]已知數(shù)列中,,,利用下面程序框圖計(jì)算該數(shù)列的項(xiàng)時(shí),若輸出的是2,則判斷框內(nèi)的條件不可能是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了宣傳今年10月在某市舉行的“第十屆中國(guó)藝術(shù)節(jié)”,“十藝節(jié)”籌委會(huì)舉辦了“十藝節(jié)”知識(shí)有獎(jiǎng)問答活動(dòng),隨機(jī)對(duì)市民15~65歲的人群抽樣人,回答問題統(tǒng)計(jì)結(jié)果如下圖表所示:
組號(hào) | 分組 | 回答正確的人數(shù) | 回答正確的人數(shù)占本組的頻率 | 頻率分布直方圖 |
第1組 | 5 | 0.5 | ||
第2組 | 0.9 | |||
第3組 | 27 | |||
第4組 | 9 | 0.36 | ||
第5組 | 3 | 0.2 |
(1)分別求出的值;
(2)從第2,3,4組回答正確的人中用分層抽樣的方法抽取6人,“十藝節(jié)”籌委會(huì)決定在所抽取的6人中隨機(jī)抽取2人頒發(fā)幸運(yùn)獎(jiǎng),求所抽取的人中第2組至少有1人獲得幸運(yùn)獎(jiǎng)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】計(jì)算機(jī)誕生于20世紀(jì)中葉,是人類最偉大的技術(shù)發(fā)明之一.計(jì)算機(jī)利用二進(jìn)制存儲(chǔ)信息,其中最基本單位是“位(bit)”,1位只能存放2種不同的信息:0或1,分別通過電路的斷或通來實(shí)現(xiàn).“字節(jié)(Byte)”是更大的存儲(chǔ)單位,1Byte=8bit,因此1字節(jié)可存放從00000000(2)至11111111(2)共256種不同的信息.將這256個(gè)二進(jìn)制數(shù)中,恰有相鄰三位數(shù)是1,其余各位數(shù)均是0的所有數(shù)相加,則計(jì)算結(jié)果用十進(jìn)制表示為( )
A.378B.441C.742D.889
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:()的左、右焦點(diǎn)分別為,焦距為,過點(diǎn)作直線交橢圓于兩點(diǎn),的周長(zhǎng)為.
(1)求橢圓的方程;
(2)若斜率為的直線與橢圓相交于兩點(diǎn),求定點(diǎn)與交點(diǎn)所構(gòu)成的三角形面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,若,,且.
(Ⅰ)求動(dòng)點(diǎn)的軌跡的方程;
(Ⅱ)設(shè)(Ⅰ)中曲線的左、右頂點(diǎn)分別為、,過點(diǎn)的直線與曲線交于兩點(diǎn),(不與,重合).若直線與直線相交于點(diǎn),試判斷點(diǎn),,是否共線,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(1)若函數(shù)在區(qū)間上單調(diào)遞減,試探究函數(shù)在區(qū)間上的單調(diào)性;
(2)證明:方程在上有且僅有兩解.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在如圖如示的多面體中,平面平面,四邊形是邊長(zhǎng)為的正方形, ∥,且.
(1)若分別是中點(diǎn),求證: ∥平面
(2)求此多面體的體積
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com