18.某校開設(shè)8門選修課程供學(xué)生選修,其中A,B,C三門選修課由于上課時間相同,至多選一門.學(xué)校規(guī)定,每位同學(xué)選修三門,則每位同學(xué)不同的選修方案種數(shù)是( 。
A.30B.40C.90D.240

分析 A,B,C三門由于上課時間相同至多選一門,A,B,C三門課都不選,A,B,C中選一門,剩余5門課中選兩門,根據(jù)分類計數(shù)原理得到結(jié)果.

解答 解:∵A,B,C三門由于上課時間相同,至多選一門
第一類A,B,C三門課都不選,有C53=10種方案;
第二類A,B,C中選一門,剩余5門課中選兩門,有C31C52=30種方案.
∴根據(jù)分類計數(shù)原理知共有10+30=40種方案.
故選:B

點評 本題考查分類計數(shù)問題,這是經(jīng)常出現(xiàn)的一個問題,解題時一定要分清做這件事需要分為幾類,每一類包含幾種方法,把幾個步驟中數(shù)字相加得到結(jié)果.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)=(x+1)lnx,g(x)=a(x-1)(a∈R).
(Ⅰ)求f(x)的單調(diào)區(qū)間;
(Ⅱ)若f(x)≥g(x)對任意的x∈[1,+∞)恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知函數(shù)f(x)=(m2-m-1)x-5m-3是冪函數(shù)且是(0,+∞)上的增函數(shù),則函數(shù)g(x)=$\frac{x+1}{{\sqrt{{{log}_{0.2}}(x+m)}}}$的定義域為( 。
A.(1,2)B.(1,2]C.[1,+∞)D.(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知定義在R上的函數(shù)f(x)=$\frac{2}{1+{2}^{x}}$-1.
(1)判斷函數(shù)f(x)的奇偶性;
(2)判斷并證明f(x)的單調(diào)性;
(3)若f(2-t2)+f(t)<0,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知f(x)=(2x-3)n展開式的二項式系數(shù)和為512,且(2x-3)n=a0+a1(x-1)+a2(x-1)2+…+an(x-1)n
(1)求a2的值;
(2)求a1+a2+a3+…+an的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.對于問題:“已知關(guān)于x的不等式ax2+bx+c>0的解集為(-1,2),解關(guān)于x的不等式ax2-bx+c>0”,給出如下一種解法:
解:由ax2+bx+c>0的解集為(-1,2),得a(-x)2+b(-x)+c>0的解集為(-2,1),
即關(guān)于x的不等式ax2-bx+c>0的解集為(-2,1).
參考上述解法,若關(guān)于x的不等式$\frac{k}{x+a}$+$\frac{x+b}{x+c}$<0的解集為(-1,-$\frac{1}{2}$)∪($\frac{1}{3}$,1),則關(guān)于x的不等式$\frac{kx}{ax+1}$+$\frac{bx+1}{cx+1}$<0的解集為(-3,-1)∪(1,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.若某公司從5位大學(xué)畢業(yè)生甲、乙、丙、丁、戊中錄用3人,這5人被錄用的機會均等,則甲、乙同時被錄用的概率為(  )
A.$\frac{3}{10}$B.$\frac{2}{5}$C.$\frac{3}{5}$D.$\frac{1}{10}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.某程序框圖如圖所示,則該程序運行后輸出的值是( 。
A.0B.-1C.-2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知函數(shù)f(x)=sin2(x+φ),則( 。
A.當φ=-$\frac{π}{4}$時,f(x)為奇函數(shù)B.當φ=0時,f(x)為偶函數(shù)
C.當φ=$\frac{π}{2}$時,f(x)為奇函數(shù)D.當φ=π時,f(x)為偶函數(shù)

查看答案和解析>>

同步練習(xí)冊答案