(本小題滿分12分)
設函數f (x)=,其中a∈R.
(1)若a=1,f (x)的定義域為[0,3],求f (x)的最大值和最小值.
(2)若函數f (x)的定義域為區(qū)間(0,+∞),求a的取值范圍使f (x)在定義域內是單調減函數.
(1)f (x)max=,f (x)min=-1;(2)a<-1。
【解析】
試題分析:f (x)===a-,
設x1,x2∈R,則f (x1)-f (x2)==. ……2分
(1)當a=1時,設0≤x1<x2≤3,則f (x1)-f (x2)=.
又x1-x2<0,x1+1>0,x2+1>0,所以f (x1)-f (x2)<0,
∴f (x1)<f (x2), ……4分
所以f (x)在[0,3]上是增函數,所以f (x)max=f (3)=1-=;
f (x)min=f (0)=1-=-1. ……7分
(2)設x1>x2>0,則x1-x2>0,x1+1>0,x2+1>0
要f (x)在(0,+∞)上是減函數,只要f (x1)-f (x2)<0
而f (x1)-f (x2)=,所以當a+1<0即a<-1時,有f (x1)-f (x2)<0,所以f (x1)<f (x2),
所以當a<-1時,f (x)在定義域(0,+∞)上是單調減函數. ……12分
考點:本題考查函數的性質:單調性;定義域;最值。
點評:對于形如的函數,我們常采取分離常數法化為的形式。而的圖像可以有反比例函數的圖像經過平移伸縮變換得到。
科目:高中數學 來源: 題型:
3 |
查看答案和解析>>
科目:高中數學 來源: 題型:
ON |
ON |
5 |
OM |
OT |
M1M |
N1N |
OP |
OA |
查看答案和解析>>
科目:高中數學 來源: 題型:
(2009湖南卷文)(本小題滿分12分)
為拉動經濟增長,某市決定新建一批重點工程,分別為基礎設施工程、民生工程和產業(yè)建設工程三類,這三類工程所含項目的個數分別占總數的、、.現有3名工人獨立地從中任選一個項目參與建設.求:
(I)他們選擇的項目所屬類別互不相同的概率; w.w.w.k.s.5.u.c.o.m
(II)至少有1人選擇的項目屬于民生工程的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
(本小題滿分12分)
某民營企業(yè)生產A,B兩種產品,根據市場調查和預測,A產品的利潤與投資成正比,其關系如圖1,B產品的利潤與投資的算術平方根成正比,其關系如圖2,
(注:利潤與投資單位是萬元)
(1)分別將A,B兩種產品的利潤表示為投資的函數,并寫出它們的函數關系式.(2)該企業(yè)已籌集到10萬元資金,并全部投入到A,B兩種產品的生產,問:怎樣分配這10萬元投資,才能使企業(yè)獲得最大利潤,其最大利潤為多少萬元.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com