【題目】下表提供了某廠節(jié)能降耗技術(shù)改造后生產(chǎn)產(chǎn)品過程中記錄的產(chǎn)量x(噸)與相應(yīng)的生產(chǎn)能耗y(噸)標(biāo)準(zhǔn)煤的幾組對照數(shù)據(jù):

x

3

4

5

6

y

2.5

3

4

4.5


(1)求y關(guān)于x的線性回歸方程;(已知
(2)已知該廠技術(shù)改造前100噸甲產(chǎn)品能耗為90噸標(biāo)準(zhǔn)煤,試根據(jù)(1)求出的線性回歸方程,預(yù)測生產(chǎn)100噸甲產(chǎn)品的生產(chǎn)能耗比技術(shù)改造前降低了多少噸標(biāo)準(zhǔn)煤.

【答案】
(1)解:∵ (噸),

(噸),

,

,

∴a= ﹣0.7× =3.5﹣0.7×4.5=0.35,

∴y關(guān)于x的回歸方程為


(2)解:由(1)可知技術(shù)改造后100噸甲產(chǎn)品的生產(chǎn)能耗約為0.7×100+0.35=70.35(噸),

∵技術(shù)改造前100噸甲產(chǎn)品的生產(chǎn)能耗為90噸,

∴降低的能耗約為90﹣70.35=19.65(噸),

即預(yù)測生產(chǎn)100噸甲產(chǎn)品的生產(chǎn)能耗比技術(shù)改造前降低了19.65噸標(biāo)準(zhǔn)煤


【解析】(1)根據(jù)所給的這組數(shù)據(jù)求出利用最小二乘法所需要的幾個數(shù)據(jù),代入求系數(shù)b的公式,求得結(jié)果,再把樣本中心點代入,求出a的值,得到線性回歸方程.(2)根據(jù)上一問所求的線性回歸方程,把x=100代入線性回歸方程,預(yù)測生產(chǎn)100噸甲產(chǎn)品的生產(chǎn)能耗比技改前降低標(biāo)準(zhǔn)煤的數(shù)量.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= sin cos +sin2 (ω>0,0<φ< ).其圖象的兩個相鄰對稱中心的距離為 ,且過點( ,1).
(1)函數(shù)f(x)的解析式;
(2)在△ABC中,角A,B,C所對的邊分別為a,b,c.已知 = .且f(A)= ,求角C的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列滿足, ,其中.

(1)設(shè),求證:數(shù)列是等差數(shù)列,并求出的通項公式;

(2)設(shè),數(shù)列的前項和為,是否存在正整數(shù),使得對于恒成立,若存在,求出的最小值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某書店銷售剛剛上市的某知名品牌的高三數(shù)學(xué)單元卷,按事先擬定的價格進行5天試銷,每種單價試銷1天,得到如下數(shù)據(jù):

單價(元)

18

19

20

21

22

銷量(冊)

61

56

50

48

45

1)求試銷5天的銷量的方差和的回歸直線方程;

2)預(yù)計今后的銷售中,銷量與單價服從(1)中的回歸方程,已知每冊單元卷的成本是14元,為了獲得最大利潤,該單元卷的單價卷的單價應(yīng)定為多少元?

(附:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題10分) 從3名男生和名女生中任選2人參加比賽。

①求所選2人都是男生的概率;

②求所選2人恰有1名女生的概率;

③求所選2人中至少有1名女生的概率

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】解答
(1)在區(qū)間[1,3]上任取兩整數(shù)a、b,求二次方程x2+2ax+b2=0有實數(shù)根的概率.
(2)在區(qū)間[1,3]上任取兩實數(shù)a、b,求二次方程x2+2ax+b2=0有實數(shù)根的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】近期中央電視臺播出的《中國詩詞大會》火遍全國,下面是組委會在選拔賽時隨機抽取的100名選手的成績,按成績分組,得到的頻率分布表如下所示:

組號

分組

頻數(shù)

頻率

第1組

第2組

第3組

20

第4組

20

第5組

10

合計

100

(1)請先求出頻率分布表中①、②位置的相應(yīng)數(shù)據(jù),再完成頻率分布直方圖(用陰影表示);

(2)為了能選拔出最優(yōu)秀的選手,組委會決定在筆試成績高的第3、4、5組中用分層抽樣抽取5名選手進入第二輪面試,求第3、4、5組每組各抽取多少名選手進入第二輪面試;

(3)在(2)的前提下,組委會決定在5名選手中隨機抽取2名選手接受考官進行面試,求:第4組至少有一名選手被考官面試的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=Asin(x+φ)(A>0,0<φ<π),x∈R的最大值是1,其圖象經(jīng)過點
(1)求f(x)的解析式;
(2)已知 ,且 , ,求f(α﹣β)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲,乙兩臺機床同時生產(chǎn)一種零件,其質(zhì)量按測試指標(biāo)劃分:指標(biāo)大于或等于100為優(yōu)品,大于等于90且小于100為合格品,小于90為次品,現(xiàn)隨機抽取這兩臺車床生產(chǎn)的零件各100件進行檢測,檢測結(jié)果統(tǒng)計如下:

測試指標(biāo)

機床甲

8

12

40

32

8

機床乙

7

18

40

29

6

(1)試分別估計甲機床、乙機床生產(chǎn)的零件為優(yōu)品的概率;

(2)甲機床生產(chǎn)一件零件,若是優(yōu)品可盈利160元,合格品可盈利100元,次品則虧損20元;假設(shè)甲機床某天生產(chǎn)50件零件,請估計甲機床該天的日利潤(單位:元);

(3)從甲、乙機床生產(chǎn)的零件指標(biāo)在內(nèi)的零件中,采用分層抽樣的方法抽取5件,從這5件中任選2件進行質(zhì)量分析,求這2件都是乙機床生產(chǎn)的概率.

查看答案和解析>>

同步練習(xí)冊答案