12.已知數(shù)列1,0,1,0,…,下列選項(xiàng)中,不能作為它的通項(xiàng)的是( 。
A.$\frac{1}{2}[{1+{{(-1)}^{n+1}}}]$B.${sin^2}\frac{nπ}{2}$C.$\frac{1}{2}[{1+{{(-1)}^n}}]$D.$\frac{1-cosnπ}{2}$

分析 經(jīng)過驗(yàn)證:即可得出.

解答 解:經(jīng)過驗(yàn)證:A,B,D可以作為數(shù)列的通項(xiàng)公式,而C:n=1時(shí),$\frac{1}{2}[1+(-1)^{1}]$=0≠1,因此不能作為數(shù)列的通項(xiàng)公式.
故選:C.

點(diǎn)評(píng) 本題考查了數(shù)列的通項(xiàng)公式,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知數(shù)列{an}為等比數(shù)列,a2,a4的等差中項(xiàng)為4,a5,a7的等差中項(xiàng)為8$\sqrt{2}$,則a1的值為( 。
A.$\frac{\sqrt{2}}{3}$B.$\frac{2\sqrt{2}}{3}$C.$\sqrt{2}$D.$\frac{4\sqrt{2}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.經(jīng)過點(diǎn)M(2,1)作直線l交雙曲線x2-$\frac{y^2}{2}$=1于A,B兩點(diǎn),且M為AB的中點(diǎn),則直線l的方程為( 。
A.4x+y+7=0B.4x+y-7=0C.4x-y-7=0D.4x-y+7=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.比較下列各數(shù)大小
①log0.52.7> log0.52.8;
②1.70.3>0.93.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.對(duì)于△ABC,有如下四個(gè)命題:
①若sin2A=sin2B,則△ABC為等腰三角形
②若sinB=cosA,則△ABC是直角三角形
③若sin2A+sin2B>sin2C,則△ABC是鈍角三角形
④若$\frac{a}{{cos\frac{A}{2}}}=\frac{{cos\frac{B}{2}}}=\frac{c}{{cos\frac{C}{2}}}$,則△ABC是等邊三角形
其中正確的命題的序號(hào)是④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.我們把平面區(qū)域中橫縱坐標(biāo)均為整數(shù)的點(diǎn)稱為整點(diǎn),那么在不等式組$\left\{\begin{array}{l}2x-y+2>0\\ x+y-2≤0\\ y≥0\end{array}\right.$表示的平面區(qū)域中,整點(diǎn)的個(gè)數(shù)為(  )
A.4B.5C.6D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.為了解某天甲乙兩廠的產(chǎn)品質(zhì)量,采用分層抽樣的方法從甲乙兩廠生產(chǎn)的產(chǎn)品中分別抽取14件和15件,測(cè)量產(chǎn)品中的微量元素x,y的含量(單位:毫克).當(dāng)產(chǎn)品中的微量元素x,y滿足x≥175且y≥75時(shí),該產(chǎn)品為優(yōu)等品.已知甲廠該天生產(chǎn)的產(chǎn)品共有98件,如表是乙廠的5件產(chǎn)品的測(cè)量數(shù)據(jù):
編號(hào)12345
x169178166175180
y7580777081
(1)求乙廠該天生產(chǎn)的產(chǎn)品數(shù)量;
(2)用上述樣本數(shù)據(jù)估計(jì)乙廠該天生產(chǎn)的優(yōu)等品的數(shù)量;
(3)從乙廠抽出的上述5件產(chǎn)品中,隨機(jī)抽取2件,求抽取的2件產(chǎn)品中優(yōu)等品至少有1件的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.設(shè)△ABC的內(nèi)角A、B、C所對(duì)的邊分別為a、b、c,且a2=b2+c2+bc,
(Ⅰ)求角A的大;
(Ⅱ)若a=$\sqrt{3}$,C=$\frac{π}{6}$,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.正項(xiàng)數(shù)列{an}的前n項(xiàng)和為Sn,對(duì)任意n∈N+都有a31+a32+a33+…+a3n=S2n+2Sn
(1)求a1,a2;
(2)求an及數(shù)列{3${\;}^{{a}_{n}}$-26an}的前n項(xiàng)和Tn的最小值;
(3)設(shè)bn=3n+(-1)n-1•t•2${\;}^{{a}_{n}}$,對(duì)任意n∈N+都有bn+1>bn恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案