在數(shù)列{an}中,已知a1=a2=2,an+2=5an+1-6an,則a3=
 
考點:數(shù)列遞推式
專題:等差數(shù)列與等比數(shù)列
分析:把a1=a2=2,代入an+2=5an+1-6an,能求出a3
解答: 解:∵a1=a2=2,an+2=5an+1-6an,
∴a3=5a2-6a1=5×2-6×2=-2.
故答案為:-2.
點評:本題考查數(shù)列的第3項的求法,是基礎(chǔ)題,解題時要注意遞推思想的合理運用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=ln(-
1
x
)的定義域為M,g(x)=
1-x2
1+x
的定義域為N,則M∩N等于( 。
A、{x|x<0}
B、{x|x>0且x≠1}
C、{x|x<0且x≠-1}
D、{x|x≤0且x≠-1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|x2-3x-10≤0}B={x|m+1≤x≤2m-1}.
(Ⅰ)當(dāng)m=3時,求集合A∩B,A∪B;
(Ⅱ)若滿足A∩B=B,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知Sn是數(shù)列{an}的前n項和,若Sn=2n+1,則a3=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}的前n項和為Sn,2Sn-nan=n(n∈N*),若S20=-360,則a2=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

曲線y=sinx在點P(0,0)處的切線方程
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

橢圓
x2
4
+y2=1上一點P,它到左焦點的距離是它到右焦點的距離的兩倍,則點P的橫坐標(biāo)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖為一三角形數(shù)陣,它滿足:第n行首尾兩數(shù)均為n,除去首尾的數(shù)為其肩上兩數(shù)之和.如16=5+11,則第n行(n≥2)第2個數(shù)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)y=f(x)(x∈R)對任意實數(shù)x1,x2,滿足f(x1)+f(x2)=f(x1•x2).求證:
(1)f(1)=f(-1)=0;
(2)f(x)是偶函數(shù).

查看答案和解析>>

同步練習(xí)冊答案