【題目】已知多面體,,,均垂直于平面,,,

(1)證明:⊥平面;

(2)求直線與平面所成的角的正弦值.

【答案】(1)見解析;(2)直線與平面所成的角的正弦值為.

【解析】

1)根據(jù)直線與平面垂直的判定定理,要證平面,只需證與平面兩條相交直線垂直。根據(jù)已知條件可求的長度,然后跟據(jù)勾股定理可證.。同理可得.,進(jìn)而可得平面。(2)要求直線與平面所成的角的正弦值,應(yīng)先作角。由條件可得平面平面 。所以過點(diǎn),交直線于點(diǎn),連結(jié). 可知與平面所成的角.根據(jù)條件可求的三邊長,進(jìn)而可由余弦定理求得 ,然后可求。進(jìn)而求得,在中即可求得結(jié)果。

(1)由,

所以.

.

,

,得,所以,故.

因此平面.

(2)如圖,過點(diǎn),交直線于點(diǎn),連結(jié).

平面得平面平面,

平面

所以與平面所成的角.

,

所以,故.

因此,直線與平面所成的角的正弦值是.

方法二:

(1)如圖,以AC的中點(diǎn)O為原點(diǎn),分別以射線OB,OCx,y軸的正半軸,建立空間直角坐標(biāo)系O-xyz.

由題意知各點(diǎn)坐標(biāo)如下:

因此

.

.

所以平面.

(2)設(shè)直線與平面所成的角為.

由()可知

設(shè)平面的法向量.

可取.

所以.

因此,直線與平面所成的角的正弦值是.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,直三棱柱的底面是等腰直角三角形,,側(cè)棱底面,且,的中點(diǎn)

(1)求直三棱柱的全面積;

(2)求異面直線所成角的大小(結(jié)果用反三角函數(shù)表示);

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)數(shù)列的項(xiàng)數(shù)均為,則將兩個(gè)數(shù)列的偏差距離定義為,其中.

1)求數(shù)列1,2,7,8和數(shù)列2,3,5,6的偏差距離;

2)設(shè)為滿足遞推關(guān)系的所有數(shù)列的集合,中的兩個(gè)元素,且項(xiàng)數(shù)均為,若,的偏差距離小于2020,求最大值;

3)記是所有7項(xiàng)數(shù)列的集合,,且中任何兩個(gè)元素的偏差距離大于或等于3,證明:中的元素個(gè)數(shù)小于或等于16.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】實(shí)數(shù)a,b滿足ab>0ab,由a、b、按一定順序構(gòu)成的數(shù)列(  )

A. 可能是等差數(shù)列,也可能是等比數(shù)列

B. 可能是等差數(shù)列,但不可能是等比數(shù)列

C. 不可能是等差數(shù)列,但可能是等比數(shù)列

D. 不可能是等差數(shù)列,也不可能是等比數(shù)列

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}是以d為公差的等差數(shù)列,{bn}數(shù)列是以q為公比的等比數(shù)列.

(1)若數(shù)列{bn}的前n項(xiàng)和為Sn,且a1b1d=2,S3a1003+5b2﹣2010,求整數(shù)q的值;

(2)在(1)的條件下,試問數(shù)列中是否存在一項(xiàng)bk,使得bk恰好可以表示為該數(shù)列中連續(xù)ppN,p≥2)項(xiàng)的和?請說明理由;

(3)若b1arb2asar,b3at(其中tsr,且(sr)是(tr)的約數(shù)),求證:數(shù)列{bn}中每一項(xiàng)都是數(shù)列{an}中的項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,空間幾何體由兩部分構(gòu)成,上部是一個(gè)底面半徑為1,高為2的圓錐,下部是一個(gè)底面半徑為1,高為2的圓柱,圓錐和圓柱的軸在同一直線上,圓錐的下底面與圓柱的上底面重合,點(diǎn)是圓錐的頂點(diǎn),是圓柱下底面的一條直徑,、是圓柱的兩條母線,是弧的中點(diǎn).

(1)求異面直線所成的角的大;

(2)求點(diǎn)到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線,對坐標(biāo)平面上任意一點(diǎn),定義,若兩點(diǎn),,滿足,稱點(diǎn),在曲線同側(cè);,稱點(diǎn),在曲線兩側(cè).

(1)直線過原點(diǎn),線段上所有點(diǎn)都在直線同側(cè),其中,,求直線的傾斜角的取值范圍;

(2)已知曲線,為坐標(biāo)原點(diǎn),求點(diǎn)集的面積;

(3)記到點(diǎn)與到軸距離和為的點(diǎn)的軌跡為曲線,曲線,若曲線上總存在兩點(diǎn),在曲線兩側(cè),求曲線的方程與實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出條件:①;②;③;④;使得函數(shù),對任意,都使成立的條件序號是()

A.①③B.②④C.③④D.②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)求函數(shù)在區(qū)間上的最小值;

(2)令是函數(shù)圖象上任意兩點(diǎn),且滿足求實(shí)數(shù)的取值范圍;

(3)若,使成立,求實(shí)數(shù)的最大值.

查看答案和解析>>

同步練習(xí)冊答案