【題目】已知奇函數(shù)f(x)=,
(1)求實(shí)數(shù)m的值
(2)作出的圖象,并指出當(dāng)方程只有一解,a的取值范圍(不必寫過程)
(3)若函數(shù)在區(qū)間 上單調(diào)遞增,求的取值范圍.
【答案】(1)m=2(2)圖像見解析,{a|a<-1或a>1}(3)1<b≤3
【解析】
(1)利用函數(shù)的奇偶性轉(zhuǎn)化求解m即可.
(2)利用函數(shù)的解析式畫出函數(shù)的圖象,然后求解a的取值范圍即可.
(3)結(jié)合函數(shù)的圖象求b的取值范圍.
(1)設(shè)x<0,則x>0,∴f(x)=x22x,
∵函數(shù)是奇函數(shù),∴f(x)=f(x)=x2+2x(x<0).
∴m=2.
(2)函數(shù)圖象如圖所示:
當(dāng)方程f(x)a=0只有一解,a的取值范圍:{a|a<1或a>1},
(3)由圖象可知,1<b-2≤1,得1<b≤3.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)、為拋物線上的兩點(diǎn),與的中點(diǎn)的縱坐標(biāo)為4,直線的斜率為.
(1)求拋物線的方程;
(2)已知點(diǎn),、為拋物線(除原點(diǎn)外)上的不同兩點(diǎn),直線、的斜率分別為,,且滿足,記拋物線在、處的切線交于點(diǎn),線段的中點(diǎn)為,若,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)拋物線,點(diǎn), ,過點(diǎn)的直線與交于, 兩點(diǎn).
(1)當(dāng)與軸垂直時(shí),求直線的方程;
(2)證明: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某高中三年級的甲、乙兩個(gè)同學(xué)同時(shí)參加某大學(xué)的自主招生,在申請的材料中提交了某學(xué)科10次的考試成績,記錄如下:
甲:78 86 95 97 88 82 76 89 92 95
乙:73 83 69 82 93 86 79 75 84 99
(1)根據(jù)兩組數(shù)據(jù),作出兩人成績的莖葉圖,并通過莖葉圖比較兩人本學(xué)科成績平均值的大小關(guān)系及方差的大小關(guān)系(不要求計(jì)算具體值,直接寫出結(jié)論即可)
(2)現(xiàn)將兩人的名次分為三個(gè)等級:
成績分?jǐn)?shù) | |||
等級 | 合格 | 良好 | 優(yōu)秀 |
根據(jù)所給數(shù)據(jù),從甲、乙獲得“優(yōu)秀”的成績組合中隨機(jī)選取一組,求選中甲同學(xué)成績高于乙同學(xué)成績的組合的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知正三棱錐P-ABC的側(cè)面是直角三角形,PA=6,頂點(diǎn)P在平面ABC內(nèi)的正投影為點(diǎn)D,D在平面PAB內(nèi)的正投影為點(diǎn)E,連結(jié)PE并延長交AB于點(diǎn)G.
(Ⅰ)證明:G是AB的中點(diǎn);
(Ⅱ)在圖中作出點(diǎn)E在平面PAC內(nèi)的正投影F(說明作法及理由),并求四面體PDEF的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在某服裝商場,當(dāng)某一季節(jié)即將來臨時(shí),季節(jié)性服裝的價(jià)格呈現(xiàn)上升趨勢.設(shè)一種服裝原定價(jià)為每件70元,并且每周(7天)每件漲價(jià)6元,5周后開始保持每件100元的價(jià)格平穩(wěn)銷售;10周后,當(dāng)季節(jié)即將過去時(shí),平均每周每件降價(jià)6元,直到16周末,該服裝不再銷售.
(1)試建立每件的銷售價(jià)格(單位:元)與周次之間的函數(shù)解析式;
(2)若此服裝每件每周進(jìn)價(jià)(單位:元)與周次之間的關(guān)系為,,試問該服裝第幾周的每件銷售利潤最大?(每件銷售利潤=每件銷售價(jià)格-每件進(jìn)價(jià))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C1的方程為,雙曲線C2的左、右焦點(diǎn)分別是C1的左、右頂點(diǎn),而C2的左、右頂點(diǎn)分別是C1的左、右焦點(diǎn),O為坐標(biāo)原點(diǎn).
(1)求雙曲線C2的方程;
(2)若直線l:y=kx+與雙曲線C2恒有兩個(gè)不同的交點(diǎn)A和B,且,求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四棱錐,底面為邊長為2的菱形,平面,,,分別是,的中點(diǎn).
(1)判定與是否垂直,并說明理由;
(2)若,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線: ,若存在實(shí)數(shù)使得一條曲線與直線有兩個(gè)不同的交點(diǎn),且以這兩個(gè)交點(diǎn)為端點(diǎn)的線段長度恰好等于,則稱此曲線為直線的“絕對曲線”.下面給出的四條曲線方程:
①;②;③;④.
其中直線的“絕對曲線”的條數(shù)為( )
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com