【題目】已知橢圓的離心率為,以原點(diǎn)為圓心,以橢圓的短半軸長為半徑的圓與直線相切.

(Ⅰ)求橢圓的方程;

(Ⅱ)過橢圓的右焦點(diǎn)的直線與橢圓交于A,B,過垂直的直線與橢圓交于,,與交于,求證:直線,的斜率,成等差數(shù)列.

【答案】(Ⅰ)(Ⅱ)見解析

【解析】

(Ⅰ)由題意知,得與直線相切,利用圓心到直線的距離d=r求b,再求a,c,則方程可求;(Ⅱ)設(shè)直線的方程為與橢圓聯(lián)立消y,得韋達(dá)定理,再設(shè) 直線的方程為,得P坐標(biāo),將坐標(biāo)化代入韋達(dá)定理,整理即可證明

(1)由題意知,所以,即,

又因?yàn)橐栽c(diǎn)為圓心,以橢圓的短半軸長為半徑的圓,

與直線相切,所以圓心到直線的距離d,所以,,

故橢圓的方程為

(2)由題意知直線的斜率存在且不為0,則直線的方程為

設(shè)點(diǎn),,利用根與系數(shù)的關(guān)系得,,

由題意知直線的斜率為,則直線的方程為

,得點(diǎn)的坐標(biāo)

,所以成等差數(shù)列;

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】橢圓的左右焦點(diǎn)分別為,為坐標(biāo)原點(diǎn),以下說法正確的是(

A.過點(diǎn)的直線與橢圓交于,兩點(diǎn),則的周長為.

B.橢圓上存在點(diǎn),使得.

C.橢圓的離心率為

D.為橢圓一點(diǎn),為圓上一點(diǎn),則點(diǎn),的最大距離為.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】01,2,3,4這五個(gè)數(shù)字組成無重復(fù)數(shù)字的自然數(shù).

(Ⅰ)在組成的三位數(shù)中,求所有偶數(shù)的個(gè)數(shù);

(Ⅱ)在組成的三位數(shù)中,如果十位上的數(shù)字比百位上的數(shù)字和個(gè)位上的數(shù)字都小,則稱這個(gè)數(shù)為“凹數(shù)”,如301,423等都是“凹數(shù)”,試求“凹數(shù)”的個(gè)數(shù);

(Ⅲ)在組成的五位數(shù)中,求恰有一個(gè)偶數(shù)數(shù)字夾在兩個(gè)奇數(shù)數(shù)字之間的自然數(shù)的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4—4:坐標(biāo)系與參數(shù)方程

已知曲線的參數(shù)方程為為參數(shù)),以平面直角坐標(biāo)系的原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為

(Ⅰ)求曲線的直角坐標(biāo)方程及曲線上的動(dòng)點(diǎn)到坐標(biāo)原點(diǎn)的距離的最大值;

(Ⅱ)若曲線與曲線相交于兩點(diǎn),且與軸相交于點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C (a>b>0)的一個(gè)頂點(diǎn)為A(2,0),離心率為.直線yk(x-1)與橢圓C交于不同的兩點(diǎn)M,N.

(1)求橢圓C的方程;

(2)當(dāng)△AMN的面積為時(shí),求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題10分)選修4—4:坐標(biāo)系與參數(shù)方程

已知曲線C1的參數(shù)方程為t為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為ρ=2sinθ

)把C1的參數(shù)方程化為極坐標(biāo)方程;

)求C1C2交點(diǎn)的極坐標(biāo)(ρ≥0,0≤θ

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列結(jié)論中不正確的個(gè)數(shù)是(

①一個(gè)人打靶時(shí)連續(xù)射擊兩次,則事件至少有一次中靶與事件至多有一次中靶是對(duì)立事件;

的充分不必要條件;

③若事件與事件滿足條件:,則事件與事件是對(duì)立事件;

④把紅、橙、黃、綠4張紙牌隨機(jī)分給甲、乙、丙、丁4人,每人分得1張,則事件甲分得紅牌與事件乙分得紅牌是互斥事件.

A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知離心率為2的雙曲線的一個(gè)焦點(diǎn)到一條漸近線的距離為.

(1)求雙曲線的方程;

(2)設(shè)分別為的左右頂點(diǎn),異于一點(diǎn),直線分別交軸于兩點(diǎn),求證:以線段為直徑的圓經(jīng)過兩個(gè)定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知|x|≤2,|y|≤2,點(diǎn)P的坐標(biāo)為(x,y).

(1)求當(dāng)x,yR時(shí),P滿足(x-2)2+(y-2)2≤4的概率.

(2)求當(dāng)x,yZ時(shí),P滿足(x-2)2+(y-2)2≤4的概率.

查看答案和解析>>

同步練習(xí)冊答案