若{an}是正項遞增等比數(shù)列,Tn表示其前n項之積,且T10=T20,則當Tn取最小值時,n的值為
 
考點:等比數(shù)列的性質
專題:等差數(shù)列與等比數(shù)列
分析:欲求n的值,根據(jù)T10=T20,得出a11a12…a20=1,根據(jù)等比數(shù)列的性質有a11a20=a12a19=1;由等比數(shù)列是正項遞增的,容易得到a15<a16.分析得出a15<1,a16>1,從而得到T16最。
解答: 解:根據(jù)T10=T20,得出a11a12…a20=1,
a11a20=a12a19=…=a15a16=1;a15<a16,
所以a15<1,a16>1,T15最。
故答案為:15.
點評:此題考查等比數(shù)列的性質,需要靈活應用.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

曲線f(x)=x3+x-2在P0點處的切線平行于直線y=4x-3,則P0點的坐標為( 。
A、(-1,-4)
B、(0,1)
C、(1,0)
D、(1,0)或(-1,-4)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若X是一個集合,τ是一個以X的某些子集為元素的集合,且滿足:
①X屬于τ,ϕ屬于τ;
②τ中任意多個元素的并集屬于τ;
③τ中任意多個元素的交集屬于τ.則稱τ是集合X上的一個拓撲.
已知集合X={a,b,c},對于下面給出的四個集合τ:
①τ={∅,{a},{c},{a,b,c}};
②τ={∅,,{c},{b,c},{a,b,c}};
③τ={∅,{a},{a,b},{a,c}};
④τ={∅,{a,c},{b,c},{c},{a,b,c}}.
其中是集合X上的拓撲的集合τ的序號是( 。
A、①B、②C、②③D、②④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

同時具有性質“①最小正周期是π,②圖象關于直線x=
π
3
對稱”的一個函數(shù)是( 。
A、y=sin(
x
2
+
π
6
B、y=cos(x+
π
3
C、y=cos(2x-
π
6
D、y=sin(2x-
π
6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知命題P:x=1是ax2+bx+c=0的一個根,命題q:a+b+c=0,則p是q的(  )條件.
A、充分非必要
B、必要非充分
C、充要
D、既不充分也不必要

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若sin
α
2
=
4
5
,且α是第二象限角,則tan
α
2
=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

計算:log4
7
48
+log412-
1
2
log442=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}滿足a2=2,Sn為其前n項和,且Sn=
an(n+1)
2
(n=1,2,3,…).
(Ⅰ)求a1的值;
(Ⅱ)求證:an=
n
n-1
an-1(n≥2);
(Ⅲ)判斷數(shù)列{an}是否為等差數(shù)列,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖所示,在△ABC中,點M是AB的中點,且
AN
=
1
2
NC
,BN與CM相交于點E,設
AB
=
a
,
AC
=
b
,試用基底
a
、
b
表示向量
AE

查看答案和解析>>

同步練習冊答案