17.設(shè)變量x,y滿足約束條件:$\left\{\begin{array}{l}x+y-3≥0\\ x-y+1≥0\\ 2x-y-3≤0\end{array}\right.$,則目標(biāo)函數(shù)z=x+2y的最小值為4.

分析 由約束條件作出可行域,化目標(biāo)函數(shù)為直線方程的斜截式,數(shù)形結(jié)合得到最優(yōu)解,聯(lián)立方程組求得最優(yōu)解的坐標(biāo),代入目標(biāo)函數(shù)得答案.

解答 解:由約束條件$\left\{\begin{array}{l}x+y-3≥0\\ x-y+1≥0\\ 2x-y-3≤0\end{array}\right.$作出可行域如圖,

聯(lián)立$\left\{\begin{array}{l}{2x-y-3=0}\\{x+y-3=0}\end{array}\right.$,解得A(2,1),
化目標(biāo)函數(shù)z=x+2y為y=-$\frac{x}{2}+\frac{z}{2}$,
由圖可知,當(dāng)直線y=-$\frac{x}{2}+\frac{z}{2}$過點(diǎn)A時(shí),直線在y軸上的截距最小,z有最小值為4.
故答案為:4.

點(diǎn)評(píng) 本題考查簡(jiǎn)單的線性規(guī)劃,考查了數(shù)形結(jié)合的解題思想方法,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知集合A={x|log2(x-1)<1},$B=\left\{{x|\frac{x+1}{x-3}<0}\right\}$,則“x∈A”是“x∈B”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.在復(fù)平面內(nèi),復(fù)數(shù)z對(duì)應(yīng)的點(diǎn)是Z(1,-2),則復(fù)數(shù)z的共軛復(fù)數(shù)$\overline z$=( 。
A.1+2iB.1-2iC.2+iD.2-i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.若拋物線y2=ax的焦點(diǎn)到其準(zhǔn)線的距離是2,則a=( 。
A.±1B.±2C.±4D.±8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.為了解600名學(xué)生的視力情況,采用系統(tǒng)抽樣的方法,從中抽取容量為20的樣本,則需要分成幾個(gè)小組進(jìn)行抽。ā 。
A.20B.30C.40D.50

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.若二次函數(shù)f(x)=ax2+bx+c(a≤b)的值域?yàn)閇0,+∞),則$\frac{b-a}{a+b+c}$的最大值是$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知f(x)=x2ex,若函數(shù)g(x)=f2(x)-kf(x)+1恰有四個(gè)零點(diǎn),則實(shí)數(shù)k的取值范圍是(  )
A.(-∞,-2)∪(2,+∞)B.(2,$\frac{4}{{e}^{2}}$+$\frac{{e}^{2}}{4}$)C.($\frac{8}{{e}^{2}}$,2)D.($\frac{4}{{e}^{2}}$+$\frac{{e}^{2}}{4}$,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.如圖,在長(zhǎng)方體ABCD-A1B1C1D1中,AB=8,BC=5,AA1=4,平面α截長(zhǎng)方體得到一個(gè)矩形EFGH,且A1E=D1F=2,AH=DG=5.
(1)求截面EFGH把該長(zhǎng)方體分成的兩部分體積之比;
(2)求直線AF與平面α所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知數(shù)列{an} 滿足a1=$\frac{1}{3}$,a2=$\frac{2}{3}$,an+2-an+1=(-1)n+1(an+1-an)(n∈N*),數(shù)列{an}的前n項(xiàng)和為Sn,則S2017=$\frac{4033}{3}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案