分析 確定拋物線的焦點(diǎn)坐標(biāo),雙曲線的漸近線方程,進(jìn)而可得a=2b,再利用拋物線的定義,結(jié)合P到雙曲線C的右焦點(diǎn)F2(c,0)的距離與到直線y=-2的距離之和的最小值為3,可得FF2=3,從而可求雙曲線的幾何量,從而可得結(jié)論.
解答 解:拋物線x2=8y的焦點(diǎn)F(0,2),
雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)一條漸近線的方程為bx-ay=0,
由拋物線x2=8y的焦點(diǎn)F到雙曲線C的漸近線的距離為$\frac{4\sqrt{5}}{5}$,
可得d=$\frac{2a}{\sqrt{{a}^{2}+^{2}}}$=$\frac{4\sqrt{5}}{5}$,
即有2b=a,
由P到雙曲線C的右焦點(diǎn)F2(c,0)的距離與到直線y=-2的距離之和的最小值為3,
由拋物線的定義可得P到準(zhǔn)線的距離即為P到焦點(diǎn)F的距離,
可得|PF2|+|PF|的最小值為3,
連接FF2,可得|FF2|=3,
即c2+4=9,
解得c=$\sqrt{5}$,
由c2=a2+b2,a=2b,
解得a=2,b=1,
則雙曲線的方程為$\frac{x^2}{4}$-y2=1.
故答案為:$\frac{x^2}{4}$-y2=1.
點(diǎn)評(píng) 本題主要考查了拋物線、雙曲線的幾何性質(zhì),考查拋物線的定義,考查學(xué)生分析解決問題的能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {1,2} | B. | {1,2,3,4} | C. | {1,2,3} | D. | {1,2,4} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | -1 | C. | -$\frac{1}{2}$ | D. | -$\frac{\sqrt{3}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 189 | B. | 72 | C. | 60 | D. | 33 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com