16.設集合A={x||x-2|<3},N為自然數(shù)集,則A∩N中元素的個數(shù)為( 。
A.3B.4C.5D.6

分析 求出A中絕對值不等式的解集確定出A,找出A與N的交集,即可作出判斷.

解答 解:由A中不等式變形得-3<x-2<3,
解得:-1<x<5,即A=(-1,5),
∴A∩N={0,1,2,3,4},
則A∩N中元素的個數(shù)為5,
故選:C.

點評 此題考查了交集及其運算,熟練掌握交集的定義是解本題的關鍵.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

6.已知兩個非空集合A={x|x(x-3)<4},B={x|$\sqrt{x}$≤a},若A∩B=B,則實數(shù)a的取值范圍是[0,2).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.若$\overrightarrow a$,$\overrightarrow b$滿足|$\overrightarrow a$|=1,|$\overrightarrow b$|=2,且($\overrightarrow a$+$\overrightarrow b$)⊥$\overrightarrow a$,則$\overrightarrow a$與$\overrightarrow b$的夾角為( 。
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.設集合A={1,2,3,4,5},B={6,7,8},從集合A到集合B的映射f中滿足f(1)≤f(2)≤f(3)≤f(4)≤f(5)的映射的個數(shù)是(  )
A.3B.6C.12D.21

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.下列函數(shù)的最小正周期為π的是( 。
A.y=cos2xB.y=|sin$\frac{x}{2}$|C.y=sinxD.y=tan$\frac{x}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.如圖,角α的終邊與單位圓交于點M,M的縱坐標為$\frac{4}{5}$,則cosα=( 。
A.$\frac{3}{5}$B.-$\frac{3}{5}$C.$\frac{4}{5}$D.-$\frac{4}{5}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.在二項式($\frac{1}{{\sqrt{x}}}$-x24展開式中含x3項的系數(shù)是6.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.已知m,n為直線,α,β為空間的兩個平面,給出下列命題:
①$\left\{\begin{array}{l}m⊥α\\ m⊥n\end{array}$,⇒n∥α;②$\left\{\begin{array}{l}m?α\\ n?β\\ α∥β\end{array}$,⇒m∥n;③$\left\{\begin{array}{l}m⊥α\\ m⊥β\end{array}$,⇒α∥β;④$\left\{\begin{array}{l}m⊥β\\ n⊥β\end{array}$,⇒m∥n.
其中的正確命題為③④.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.已知直線l1的方程為3x+4y-12=0,
(1)求l2的方程,使得:①l2與l1平行,且過點(-1,3);
②l2與l1垂直,且l2與兩坐標軸圍成的三角形面積為4;
(2)直線l1與兩坐標軸分別交于A、B 兩點,求三角形OAB(O為坐標原點)內切圓及外接圓的方程.

查看答案和解析>>

同步練習冊答案