分析 先求出函數(shù)的導(dǎo)數(shù),問(wèn)題轉(zhuǎn)化為a<($\frac{1}{x}$)min在(0,+∞)恒成立,從而求出a的范圍.
解答 解:y′=a-$\frac{1}{x}$=$\frac{ax-1}{x}$,(x>0),
若函數(shù)y=ax-lnx在定義域上單調(diào)遞減,
則ax-1<0在(0,+∞)恒成立,
即a<($\frac{1}{x}$)min在(0,+∞)恒成立,
∴a≤0,
故答案為:(-∞,0].
點(diǎn)評(píng) 本題考查了函數(shù)的單調(diào)性問(wèn)題,考查導(dǎo)數(shù)的應(yīng)用,函數(shù)恒成立問(wèn)題,是一道基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\overrightarrow{0}$+$\overrightarrow{0}$=0 | |
B. | 對(duì)于任意向量$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{a}$+$\overrightarrow$=$\overrightarrow$+$\overrightarrow{a}$ | |
C. | 對(duì)于任意向量$\overrightarrow{a}$,$\overrightarrow$,|$\overrightarrow{a}$+$\overrightarrow$|>0 | |
D. | 若向量$\overrightarrow{AB}$∥$\overrightarrow{BC}$,且$\overrightarrow{AB}$=2,|$\overrightarrow{BC}$|=2008,則|$\overrightarrow{AB}$+$\overrightarrow{BC}$|=2010 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 120 | B. | 119 | C. | 210 | D. | 209 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -4 | B. | -4或2 | C. | -2或4 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{{\sqrt{3}}}{2}$ | B. | $-\frac{{\sqrt{3}}}{2}$ | C. | $±\frac{{\sqrt{3}}}{2}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com